
Numerical Schemes -2-
Thematic School Math-Info-HPC

Thierry Dumont

Institut Camille Jordan, Lyon.

May 10, 2016

Sketch of the talk

Some promising techniques
Avoid solution of linear systems with stabilized explicit Runge–Kutta
methods
Discontinuous Galerkin methods

Runge–Kutta methods

du

dt
= F (t, u), u(t0) = u0, F : [t0,+∞[×Rm → Rm.

Let uk be the approximation of u at time k δt. uk+1?

Ui = uk + δt
s∑
j=1

aijF (t0 + cjδt, Uj) , i = 1, . . . , s,

uk+1 = uk + δt
s∑
j=1

bjF (t0 + cjδt, Uj) ,

Far from the old RK4 method!

I explicit methods,

I implicit methods.

Runge–Kutta methods

du

dt
= F (t, u), u(t0) = u0, F : [t0,+∞[×Rm → Rm.

Let uk be the approximation of u at time k δt.

uk+1?

Ui = uk + δt
s∑
j=1

aijF (t0 + cjδt, Uj) , i = 1, . . . , s,

uk+1 = uk + δt
s∑
j=1

bjF (t0 + cjδt, Uj) ,

Far from the old RK4 method!

I explicit methods,

I implicit methods.

Runge–Kutta methods

du

dt
= F (t, u), u(t0) = u0, F : [t0,+∞[×Rm → Rm.

Let uk be the approximation of u at time k δt. uk+1?

Ui = uk + δt
s∑
j=1

aijF (t0 + cjδt, Uj) , i = 1, . . . , s,

uk+1 = uk + δt
s∑
j=1

bjF (t0 + cjδt, Uj) ,

Far from the old RK4 method!

I explicit methods,

I implicit methods.

Runge–Kutta methods

du

dt
= F (t, u), u(t0) = u0, F : [t0,+∞[×Rm → Rm.

Let uk be the approximation of u at time k δt. uk+1?

Ui = uk + δt

s∑
j=1

aijF (t0 + cjδt, Uj) , i = 1, . . . , s,

uk+1 = uk + δt
s∑
j=1

bjF (t0 + cjδt, Uj) ,

Far from the old RK4 method!

I explicit methods,

I implicit methods.

Runge–Kutta methods

du

dt
= F (t, u), u(t0) = u0, F : [t0,+∞[×Rm → Rm.

Let uk be the approximation of u at time k δt. uk+1?

Ui = uk + δt

s∑
j=1

aijF (t0 + cjδt, Uj) , i = 1, . . . , s,

uk+1 = uk + δt

s∑
j=1

bjF (t0 + cjδt, Uj) ,

Far from the old RK4 method!

I explicit methods,

I implicit methods.

Runge–Kutta methods

du

dt
= F (t, u), u(t0) = u0, F : [t0,+∞[×Rm → Rm.

Let uk be the approximation of u at time k δt. uk+1?

Ui = uk + δt

s∑
j=1

aijF (t0 + cjδt, Uj) , i = 1, . . . , s,

uk+1 = uk + δt

s∑
j=1

bjF (t0 + cjδt, Uj) ,

Far from the old RK4 method!

I explicit methods,

I implicit methods.

Runge-Kutta methods: Butcher array

c1 a11 a12 · · · a1s−1 a1s

c2 a21 a22 · · · a2s−1 a2s

...
...

. . .
...

cs as1 as2 · · · ass−1 ass

b1 b2 · · · bs−1 bs

Diagonal and upper diagonal == 0 <=> explicit method.

Implicit: need to solve an algebraic system of size m× s (use simplified
Newton iterations), and a linear system if the problem is linear.

Runge-Kutta methods: Butcher array

c1 a11 a12 · · · a1s−1 a1s

c2 a21 a22 · · · a2s−1 a2s

...
...

. . .
...

cs as1 as2 · · · ass−1 ass

b1 b2 · · · bs−1 bs

Diagonal and upper diagonal == 0 <=> explicit method.

Implicit: need to solve an algebraic system of size m× s (use simplified
Newton iterations), and a linear system if the problem is linear.

Runge-Kutta methods: diagonally implicit methods

c1 γ 0 · · · · · · 0

c2 a21 γ · · · 0 0

...
...

. . .
...

cs−1 as−1,1 as−1,2 · · · γ 0

cs as1 as2 · · · as,s−1 γ

b1 b2 · · · bs−1 bs

Solve sequentially s systems. For a linear system of ODEs, solve s linear
systems, with the same matrix.

I Fully implicit RK methods cannot be used for solving PDEs.

I Diagonally implicit RK methods are ok, but with a lot of linear
algebra (for linear PDEs).

Runge-Kutta methods: diagonally implicit methods

c1 γ 0 · · · · · · 0

c2 a21 γ · · · 0 0

...
...

. . .
...

cs−1 as−1,1 as−1,2 · · · γ 0

cs as1 as2 · · · as,s−1 γ

b1 b2 · · · bs−1 bs

Solve sequentially s systems. For a linear system of ODEs, solve s linear
systems, with the same matrix.

I Fully implicit RK methods cannot be used for solving PDEs.

I Diagonally implicit RK methods are ok, but with a lot of linear
algebra (for linear PDEs).

Runge–Kutta methods: stability

Look at a linear problem: dy/dt = λy, with λ ∈ C.

Then set z = δtλ.
We have:

I With an explicit method: xk+1 = P (z)xk.

I With an implicit method: xk+1 = Q(z)xk (Padé approximant of
exp).

Stability domain: S = {z ∈ C| |xk+1| ≤ |xk|}.
If method is:

I explicit: S is bounded.

I implicit: S possibly unbounded in some direction.
If {x ∈ C,Re(x) < 0} ⊂ S, method is said A-stable.

Which value of δt is allowed?

I explicit: δt ' smallest time scales (δt ≤ 1/|λmax| for linear systems
of ODEs).

I A-stable: δt only limited by precision.

Runge–Kutta methods: stability

Look at a linear problem: dy/dt = λy, with λ ∈ C.
Then set z = δtλ.
We have:

I With an explicit method: xk+1 = P (z)xk.

I With an implicit method: xk+1 = Q(z)xk (Padé approximant of
exp).

Stability domain: S = {z ∈ C| |xk+1| ≤ |xk|}.
If method is:

I explicit: S is bounded.

I implicit: S possibly unbounded in some direction.
If {x ∈ C,Re(x) < 0} ⊂ S, method is said A-stable.

Which value of δt is allowed?

I explicit: δt ' smallest time scales (δt ≤ 1/|λmax| for linear systems
of ODEs).

I A-stable: δt only limited by precision.

Runge–Kutta methods: stability

Look at a linear problem: dy/dt = λy, with λ ∈ C.
Then set z = δtλ.
We have:

I With an explicit method: xk+1 = P (z)xk.

I With an implicit method: xk+1 = Q(z)xk (Padé approximant of
exp).

Stability domain: S = {z ∈ C| |xk+1| ≤ |xk|}.

If method is:

I explicit: S is bounded.

I implicit: S possibly unbounded in some direction.
If {x ∈ C,Re(x) < 0} ⊂ S, method is said A-stable.

Which value of δt is allowed?

I explicit: δt ' smallest time scales (δt ≤ 1/|λmax| for linear systems
of ODEs).

I A-stable: δt only limited by precision.

Runge–Kutta methods: stability

Look at a linear problem: dy/dt = λy, with λ ∈ C.
Then set z = δtλ.
We have:

I With an explicit method: xk+1 = P (z)xk.

I With an implicit method: xk+1 = Q(z)xk (Padé approximant of
exp).

Stability domain: S = {z ∈ C| |xk+1| ≤ |xk|}.
If method is:

I explicit: S is bounded.

I implicit: S possibly unbounded in some direction.
If {x ∈ C,Re(x) < 0} ⊂ S, method is said A-stable.

Which value of δt is allowed?

I explicit: δt ' smallest time scales (δt ≤ 1/|λmax| for linear systems
of ODEs).

I A-stable: δt only limited by precision.

Runge–Kutta methods: stability

Look at a linear problem: dy/dt = λy, with λ ∈ C.
Then set z = δtλ.
We have:

I With an explicit method: xk+1 = P (z)xk.

I With an implicit method: xk+1 = Q(z)xk (Padé approximant of
exp).

Stability domain: S = {z ∈ C| |xk+1| ≤ |xk|}.
If method is:

I explicit: S is bounded.

I implicit: S possibly unbounded in some direction.
If {x ∈ C,Re(x) < 0} ⊂ S, method is said A-stable.

Which value of δt is allowed?

I explicit: δt ' smallest time scales (δt ≤ 1/|λmax| for linear systems
of ODEs).

I A-stable: δt only limited by precision.

Runge–Kutta methods: order

Definition (order of an ODE solver)

Consider dy/dt = f(y) starting from y0 at time t = 0.
Apply the solver with a time step δt => y1 and compare y1 and the
exact solution y(δt).

Method is of order p iff the first p coefficients of the Taylor expansions of
y1 and y(δt) as functions of δt are equal.

Note: computing the Taylor expansions is not easy: special tools invented
by J. Butcher (rooted trees).

Some general results (s is the number of stages of the method):

I Implicit methods can have order up to 2s (Gaussian method of
Kuntzman and Butcher).

I explicit methods with s stages cannot be of order > s.

Runge–Kutta methods: order

Definition (order of an ODE solver)

Consider dy/dt = f(y) starting from y0 at time t = 0.
Apply the solver with a time step δt => y1 and compare y1 and the
exact solution y(δt).
Method is of order p iff the first p coefficients of the Taylor expansions of
y1 and y(δt) as functions of δt are equal.

Note: computing the Taylor expansions is not easy: special tools invented
by J. Butcher (rooted trees).

Some general results (s is the number of stages of the method):

I Implicit methods can have order up to 2s (Gaussian method of
Kuntzman and Butcher).

I explicit methods with s stages cannot be of order > s.

Runge–Kutta methods: order

Definition (order of an ODE solver)

Consider dy/dt = f(y) starting from y0 at time t = 0.
Apply the solver with a time step δt => y1 and compare y1 and the
exact solution y(δt).
Method is of order p iff the first p coefficients of the Taylor expansions of
y1 and y(δt) as functions of δt are equal.

Note: computing the Taylor expansions is not easy: special tools invented
by J. Butcher (rooted trees).

Some general results (s is the number of stages of the method):

I Implicit methods can have order up to 2s (Gaussian method of
Kuntzman and Butcher).

I explicit methods with s stages cannot be of order > s.

Runge–Kutta methods: order

Definition (order of an ODE solver)

Consider dy/dt = f(y) starting from y0 at time t = 0.
Apply the solver with a time step δt => y1 and compare y1 and the
exact solution y(δt).
Method is of order p iff the first p coefficients of the Taylor expansions of
y1 and y(δt) as functions of δt are equal.

Note: computing the Taylor expansions is not easy: special tools invented
by J. Butcher (rooted trees).

Some general results (s is the number of stages of the method):

I Implicit methods can have order up to 2s (Gaussian method of
Kuntzman and Butcher).

I explicit methods with s stages cannot be of order > s.

Explicit, but stabilized, Runge–Kutta methods

The idea (1): do not optimize the method for the order o, but for the
size of the stability domain; we will have s >> o.

For a linear problem dy/dt = λy, applying one step yn → yn+1 of the
method can be seen as applying a polynomial of z = δt.λ to yn:
yn+1 = Ps(z)yn (degree of Ps = s).

The idea (2): find the polynomial Ps which optimize the stability
domain, and then (try to) build the RK method from it.

For order 1, Ps is the shifted sth Chebyshev polynomial.
Obtaining an order > 1?

Explicit, but stabilized, Runge–Kutta methods

The idea (1): do not optimize the method for the order o, but for the
size of the stability domain; we will have s >> o.

For a linear problem dy/dt = λy, applying one step yn → yn+1 of the
method can be seen as applying a polynomial of z = δt.λ to yn:
yn+1 = Ps(z)yn (degree of Ps = s).

The idea (2): find the polynomial Ps which optimize the stability
domain, and then (try to) build the RK method from it.

For order 1, Ps is the shifted sth Chebyshev polynomial.
Obtaining an order > 1?

Explicit, but stabilized, Runge–Kutta methods

The idea (1): do not optimize the method for the order o, but for the
size of the stability domain; we will have s >> o.

For a linear problem dy/dt = λy, applying one step yn → yn+1 of the
method can be seen as applying a polynomial of z = δt.λ to yn:
yn+1 = Ps(z)yn (degree of Ps = s).

The idea (2): find the polynomial Ps which optimize the stability
domain, and then (try to) build the RK method from it.

For order 1, Ps is the shifted sth Chebyshev polynomial.
Obtaining an order > 1?

Explicit, but stabilized, Runge–Kutta methods

The idea (1): do not optimize the method for the order o, but for the
size of the stability domain; we will have s >> o.

For a linear problem dy/dt = λy, applying one step yn → yn+1 of the
method can be seen as applying a polynomial of z = δt.λ to yn:
yn+1 = Ps(z)yn (degree of Ps = s).

The idea (2): find the polynomial Ps which optimize the stability
domain, and then (try to) build the RK method from it.

For order 1, Ps is the shifted sth Chebyshev polynomial.

Obtaining an order > 1?

Explicit, but stabilized, Runge–Kutta methods

The idea (1): do not optimize the method for the order o, but for the
size of the stability domain; we will have s >> o.

For a linear problem dy/dt = λy, applying one step yn → yn+1 of the
method can be seen as applying a polynomial of z = δt.λ to yn:
yn+1 = Ps(z)yn (degree of Ps = s).

The idea (2): find the polynomial Ps which optimize the stability
domain, and then (try to) build the RK method from it.

For order 1, Ps is the shifted sth Chebyshev polynomial.
Obtaining an order > 1?

Explicit, but stabilized, Runge–Kutta methods

Abdulle and Medovikov: methods of order 2 and 4: Rock2 and Rock4.

Not easy: use the fact that the set of RK methods is a group for the
composition of functions (the Butcher group).

I The Jacobian of the RHS must have eigenvalues near the real axis.

I s (the number of stages) vary from 5 to more than 100 (defined by
the largest eigenvalue of the Jacobian of the RHS).

I You must have an estimation of the largest eigenvalue of the
Jacobian.

Explicit, but stabilized, Runge–Kutta methods

Abdulle and Medovikov: methods of order 2 and 4: Rock2 and Rock4.

Not easy: use the fact that the set of RK methods is a group for the
composition of functions (the Butcher group).

I The Jacobian of the RHS must have eigenvalues near the real axis.

I s (the number of stages) vary from 5 to more than 100 (defined by
the largest eigenvalue of the Jacobian of the RHS).

I You must have an estimation of the largest eigenvalue of the
Jacobian.

Explicit, but stabilized, Runge–Kutta methods

Abdulle and Medovikov: methods of order 2 and 4: Rock2 and Rock4.

Not easy: use the fact that the set of RK methods is a group for the
composition of functions (the Butcher group).

I The Jacobian of the RHS must have eigenvalues near the real axis.

I s (the number of stages) vary from 5 to more than 100 (defined by
the largest eigenvalue of the Jacobian of the RHS).

I You must have an estimation of the largest eigenvalue of the
Jacobian.

Explicit, but stabilized, Runge–Kutta methods

Use them for the Heat equation.

du

dt
= ε∆u.

In many cases, we have δt ε not large.
Examples:

I Biological problems: ε is small.

I Reaction diffusion equations: systems of the form:

dui
dt

= εi∆ui + fi(u1, . . . , un), i = 1, n.

The fastest time scales are in the (chemical) reaction.

Implementation

For linear problem the method reduces to Un+1 = Ps(A)Un. Use
Horner rule to evaluate it.

Avoid any solution of linear systems.

Explicit, but stabilized, Runge–Kutta methods

Use them for the Heat equation.

du

dt
= ε∆u.

In many cases, we have δt ε not large.
Examples:

I Biological problems: ε is small.

I Reaction diffusion equations: systems of the form:

dui
dt

= εi∆ui + fi(u1, . . . , un), i = 1, n.

The fastest time scales are in the (chemical) reaction.

Implementation

For linear problem the method reduces to Un+1 = Ps(A)Un. Use
Horner rule to evaluate it.

Avoid any solution of linear systems.

Discontinuous Galerkin methods

I Mixed formulation of ∆u = f :
div ~σ = f
~σ = ~gradu.

I Use of domain decomposition of Ω in disjoint parts Ω = ∪Kh

I Use Green formula to write the mixed formulation on each K,
performing some “integration by part”.

DG Methods

Unknowns are σh and uh.∫
K

σh.τdx = −
∫
K

uh div τdx+

∫
∂K

ûKηK .τds ∀τ ∈ Σ(K),∫
K

σh. ~grad vdw =

∫
K

fvdx +

∫
∂K

σ̂K .ηKvds ∀v ∈ P (K).

I Σ and P are generally polynoms.

I σ̂K and ûK are numerical fluxes; that is to say well chosen
approximations of the terms which appear when doing the
integration by part (the problem must be well posed: penalisation
terms must be added; all the art is here).

I σ̂ is interesting in many applications (example: flows in porous
media).

DG Methods

Unknowns are σh and uh.∫
K

σh.τdx = −
∫
K

uh div τdx+

∫
∂K

ûKηK .τds ∀τ ∈ Σ(K),∫
K

σh. ~grad vdw =

∫
K

fvdx +

∫
∂K

σ̂K .ηKvds ∀v ∈ P (K).

I Σ and P are generally polynoms.

I σ̂K and ûK are numerical fluxes; that is to say well chosen
approximations of the terms which appear when doing the
integration by part (the problem must be well posed: penalisation
terms must be added; all the art is here).

I σ̂ is interesting in many applications (example: flows in porous
media).

DG / IP Method

Many choices for the available fluxes are available. The Interior Penalty
method is convenient: it has good numerical properties and the stencil
generated is quite small.
Let K1 and K2 be 2 neighbor elements with a common edge e.

φ(x) ∈ Rd : φ =
1

2
(φ1 + φ2) [φ] = φ1.η1 + φ2.η2,

φ(x) ∈ R : φ =
1

2
(φ1 + φ2) [φ] = φ1η1 + φ2η2.

Interior penalty method. Fluxes

û = uh, σ̂ = ~graduh − ηeh−1
e [uh].

But one can eliminate σh:

Interior penalty method. Primal form

Bh(uh, v) =

∫
Ω

~graduh. ~grad vdx −
∫

Γ

([uh]. ~grad v + ~graduh.[v])ds

+

∫
Γ

α[uh].[v]ds.

with α = ηeh
−1
e on each e ∈ E .

Here:
∫

Ω
. . . dx =

∑
k

∫
k
. . . dx.

Solve:

Bh(uh, v) =

∫
Ω

fvdx.

DG

On cartesian grids (cubes) implement the method using:

I Legendre basis:

Qi,j,k = Pi,j,k(x, y, z) = pi(x) pj(y) pk(z),

with:

pl(s) = Ll((2s− h)/h), l = 0,degree.

(normalized to obtain an identity mass matrix).

I for degrees from 2 to 5 (thanks to SageMath software).

DG

Best results for degree 3:

I Ia grows with the degree of polynomials.

I Computers like vectors of size divisible by 4.

DG: stencil for polynomials of degree 3

I On 3d cartesian grid, we get a 7 matrices stencil. Let Ai,j be these
matrices.

I Ai,i is a 64× 64 matrix with 4 non zero terms by line.

I If i 6= j, Ai,j = PBP−1 orAi,j = PBtP−1 where B is a 64× 64
matrix made of 4× 4 blocks on the diagonal.

Ia ?

I Flops:
Ai,j , i 6= j : 6 × 512 = 3072
Ai,i : 1 × 512 = 512
Total : 3584 flops.

I Memory bandwidth: 8× 64 = 512 (double).

So, Ia = 7 without any reuse of data.

DG: stencil for polynomials of degree 3

I On 3d cartesian grid, we get a 7 matrices stencil. Let Ai,j be these
matrices.

I Ai,i is a 64× 64 matrix with 4 non zero terms by line.

I If i 6= j, Ai,j = PBP−1 orAi,j = PBtP−1 where B is a 64× 64
matrix made of 4× 4 blocks on the diagonal.

Ia ?

I Flops:
Ai,j , i 6= j : 6 × 512 = 3072
Ai,i : 1 × 512 = 512
Total : 3584 flops.

I Memory bandwidth: 8× 64 = 512 (double).

So, Ia = 7 without any reuse of data.

DG: stencil for polynomials of degree 3

I On 3d cartesian grid, we get a 7 matrices stencil. Let Ai,j be these
matrices.

I Ai,i is a 64× 64 matrix with 4 non zero terms by line.

I If i 6= j, Ai,j = PBP−1 orAi,j = PBtP−1 where B is a 64× 64
matrix made of 4× 4 blocks on the diagonal.

Ia ?

I Flops:
Ai,j , i 6= j : 6 × 512 = 3072
Ai,i : 1 × 512 = 512
Total : 3584 flops.

I Memory bandwidth: 8× 64 = 512 (double).

So, Ia = 7 without any reuse of data.

DG: stencil for polynomials of degree 3

Ia = 7.

I Peak theoretical performance:
7× 8.73 = 61.2 Gigaflops/second.

I Measured (Rock4, method using Horner scheme):
∂tu = ∆U : 67 Gigaflops/second.
∂tu = ∆U + f(x) : 66 Gigaflops/second.

Some data is reused.

DG: stencil for polynomials of degree 3

Ia = 7.

I Peak theoretical performance:
7× 8.73 = 61.2 Gigaflops/second.

I Measured (Rock4, method using Horner scheme):
∂tu = ∆U : 67 Gigaflops/second.
∂tu = ∆U + f(x) : 66 Gigaflops/second.

Some data is reused.

The Poisson equation

Conjugate Gradient and Polynomial Preconditioning.

Chebyshev preconditioning:

Find s ∈ Pk which minimizes:

max
λ∈[a,b]

|1− λs(λ)|.

Solution is a shifted and scaled Chebyshev polynomial.

To solve Ax = B, use M−1 = s(A) as preconditionner.

Evaluation using the 3 terms recurrence formula.
See results of W. Vanroose:
http://calcul.math.cnrs.fr/IMG/pdf/poisson_vanroose.pdf

http://calcul.math.cnrs.fr/IMG/pdf/poisson_vanroose.pdf

The Poisson equation

Conjugate Gradient and Polynomial Preconditioning.

Chebyshev preconditioning:

Find s ∈ Pk which minimizes:

max
λ∈[a,b]

|1− λs(λ)|.

Solution is a shifted and scaled Chebyshev polynomial.

To solve Ax = B, use M−1 = s(A) as preconditionner.

Evaluation using the 3 terms recurrence formula.
See results of W. Vanroose:
http://calcul.math.cnrs.fr/IMG/pdf/poisson_vanroose.pdf

http://calcul.math.cnrs.fr/IMG/pdf/poisson_vanroose.pdf

Conjugate Gradient Preonditioned

r0: = b−Ax0;u0 = M−1r0; p0 = u0;
for i = 0, do :

s := Api
α :=< ri, ui > / < s, pi >
xi+1 := xi + αpi
ri+1 := ri − αs
ui+1 := M−1ri+1

β :=< ri+1, ui+1 > / < ri, ui >
pi+1 := ui+1 + βpi

GCP

r0: = b−Ax0;u0 = M−1r0; p0 = u0;
for i = 0, do :

s := Api
α :=< ri, ui > / < s, pi >
ri+1 := ri − αs
ui+1 := M−1ri+1

β :=< ri+1, ui+1 > / < ri, ui >
xi+1 := xi + αpi
pi+1 := ui+1 + βpi

GCP: results

Grid 1283 elements (5123 unknowns), −∆u = f .

 26

 28

 30

 32

 34

 36

 38

 40

 42

 0 10 20 30 40 50 60 70

C
o
m

p
u
ti

n
g

 t
im

e

degree of preconditionner

 52

 54

 56

 58

 60

 62

 64

 66

 68

 0 10 20 30 40 50 60 70

G
fl
o
p

s/
s

degree of preconditionner

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

N
b

.
it

e
ra

ti
o
n
s

degree of preconditionner

Computing time, best: degree = 16 Gflops/s. Nb. iterations

Grid 1283 elements (5123 unknowns), −∆u+ 0.01u = f .

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 10 20 30 40 50 60 70

C
o
m

p
u
ti

n
g

 t
im

e

degree of preconditionner

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50 60 70

G
fl
o
p

s/
s

degree of preconditionner

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70

N
b

.
it

e
ra

ti
o
n
s

degree of preconditionner

Computing time, best: degree = 4 Gflops/s. Nb. iterations

GCP: results

Grid 1283 elements (5123 unknowns), −∆u = f .

 26

 28

 30

 32

 34

 36

 38

 40

 42

 0 10 20 30 40 50 60 70

C
o
m

p
u
ti

n
g

 t
im

e

degree of preconditionner

 52

 54

 56

 58

 60

 62

 64

 66

 68

 0 10 20 30 40 50 60 70

G
fl
o
p

s/
s

degree of preconditionner

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

N
b

.
it

e
ra

ti
o
n
s

degree of preconditionner

Computing time, best: degree = 16 Gflops/s. Nb. iterations

Grid 1283 elements (5123 unknowns), −∆u+ 0.01u = f .

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 10 20 30 40 50 60 70

C
o
m

p
u
ti

n
g

 t
im

e

degree of preconditionner

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 10 20 30 40 50 60 70

G
fl
o
p

s/
s

degree of preconditionner

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70

N
b

.
it

e
ra

ti
o
n
s

degree of preconditionner

Computing time, best: degree = 4 Gflops/s. Nb. iterations

Implementation, tuning

I Explore many possibilities with Python generated C++ and Jinja
template engine.

I Intel compiler options: -O2 -restrict -std=c++11 -xHOST
-no-prec-div

I VTune.

BLAS performances (Intel) on Sandy-Bridge, 8× 2 cores, doubles.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000 100000

G
fl
o
p
s/

s

n

	Some promising techniques
	Avoid solution of linear systems with stabilized explicit Runge–Kutta methods
	Discontinuous Galerkin methods

