Microbenchmarking for
architectural exploration

Probing of the memory hierarchy
Saturation effects in cache and memory
Typical OpenMP overheads

Motivation for Microbenchmarking as a tool

Isolate small kernels to:
Separate influences
Determine specific machine capabilities (light speed)
Gain experience about software/hardware interaction
Determine programming model overhead

Possibilities:
Readymade benchmark collections (epcc OpenMP, IMB)
STREAM benchmark for memory bandwidth

Implement own benchmarks (difficult and error prone)

likwid-bench tool; Offers collection of benchmarks and framework for
rapid development of assembly code kernels

(c) RRZE 2015 Microbenchmarking 2

Latency and bandwidth in modern computer environments | Il I L

NS 10° —— [L1 cache _{ —— 10"
g 1
100] L2/L3 cache /‘ U s e
1007 Main memory 1010
us | 105 ——
:li HPC networks
10° —— —— 102 |1 GBJ/s
} Sricraion-Etrerrret
104 ——
——1 Solid state disk
ms 1% —— L 4ot
N - .
102 —— Local hard disk Avoiding slow data
o — paths is the key to
101 - | |l 107 most performance
Latency Bandwidth Opt|mlzat|0n5!
[sec] [bytes/sec]

(c) RRZE 2015 Microbenchmarking 3

Recap: Data transfers in a memory hierarchy

= How does data travel from memory to the CPU and back?

= Example: Array copy A(:)=C(:)

LD C(1)
MISS

STA(L)
MISS

LD C(2..N,)
ST A(2..Nc:)}H|T

\ /

Cache

write| [evict
allocate| [(delayed)

3CL
transfers

Standard stores

LD C(1)

MISS
NTST A(1)

LD C(2..N,) HIT
NTST A(2..N,)

che

2CL
transfers

50%
Nontemporal (NT) performance

stores boost for
COPY

(c) RRZE 2015

Microbenchmarking 4

The parallel vector triad benchmark —r—
A “swiss army knife” for microbenchmarking r I- =

Simple streaming benchmark:
double precision, dimension(N) :: A,B,C,D
A=1.d0; B=A; C=A; D=A

do j=1,NITER

Prevents smarty-pants

do i=1,N compilers from doing
A(i) = B(i) + C(i) * D(i) clever” stuff
enddo

if (.something.that.is.never.true.) then
call dummy (A,B,C,D)
endif
enddo

Report performance for different N
Choose NITER so that accurate time measurement is possible

This kernel is limited by data transfer performance for all memory
levels on all current architectures!

(c) RRZE 2015 Microbenchmarking 5

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

9000
8000

7000

S &
s 8

Performance [MFlops/s]
S
S

(c) RRZE 2015

4 \W [iteration
-> 128 GB/s

2
<

| L2 cache (256k)
l I
- I 1

— AVX
— — gcalar

L3 cache (20M)

Pattern!

Are the
performance
levels
plausible?

What about
multiple cores?

Do the
bandwidths
scale?

Memory

Ineffective
instructions

10°

Loop length

Microbenchmarking

10

5W/it.
- 18 GB/s
(incl. write
allocate)

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz):

Observations and further questions

9000
8000

7000

3
S

Performance [MFlops/s]
=
S

2000

1000

| Theoretical limit?

[
ﬂ

2.66x SIMD imp

| Theoretical limit?
_/- I —I‘F ‘- — N
N/ ~
— -

— AVX
— — gcalar

Theoretical limits?

Il.._-

3

10° 10

(c) RRZE 2015

10° 10°
Loop length

Microbenchmarking

10

See later for
answersl!

The throughput-parallel vector triad benchmark rrEE
Every core runs its own, independent triad benchmark

double precision, dimension(:), allocatable :: A,B,C,D

'$OMP PARALLEL private(i,j,A,B,C,D)
allocate(A(1:N) ,B(1:N),C(1:N),D(1:N))
A=1.d0; B=A; C=A; D=A
do j=1,NITER
do i=1,N
A(i) = B(i) + C(1) * D(1)
enddo
if (.something.that.is.never.true.) then
call dummy (A,B,C,D)
endif
enddo
'SOMP END PARALLEL

= pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2015 Microbenchmarking 8

Throughput vector triad on Sandy Bridge socket (3 GHz) rr?:

_—
TU || T [T TTTI T T I T TTTT [[I T T TTT T [T TTTIT
_ | BT
60 2.0 _ i-de |
1.6 1 i Ei
— | [E |
%50 1.2 ifqgﬂﬁ-f;i :
= | e S
40 0.8 | (|
% B Saturation effect i | L e |
= in memory 1T ;—Hs :
s 1 = |F:
z % L -
£ 10°]
£ 20 —
10 /
[\ \
ﬂ || | | ||||||| | | Il/f/ml | | |||||I|L_ | | L1 1
2 3 4 5 6
10 0 10 10 10
Scalable BW in Loop length

L1, L2, L3 cache

(c) RRZE 2015 Microbenchmarking 9

Bandwidth limitations: Main Memory rr_l_

Scalability of shared data paths inside a NUMA domain (V-Triad) =
SD | | | | | | | | | | | | | | |
i Bl Westmere)
Saturation with ®—8 Sandy Bridge
401 / 3 threads ®—# Interlagos |
— | i
2
A 301 B
% i Saturation with 1
= / 2 threads
@
g i i
10 \ Saturation with |
1 thread cannot i 4 threads
- saturate bandwidth ! i
0 ., 1)NUMA domain| 2 NUMA domains, , , |
0 4 8 12 16

cores

(c) RRZE 2015 Microbenchmarking 10

Attainable memory bandwidth:

T T T T T T T T T I T I T T T T
40 & 8 & o - 40 nﬂzﬂ:w -
| ":| I |§
o o B T — |
30 2 2 n
© [T11
m [e
S ool _
10 . -
Intel Sandy Bridge Pattern! AMD Interlagos
Bandwidth . | . | | | |
0 —3 > 54 5 8 saturation 4 6 8 10 12 14 16
Threads # Threads
ULRARLL T T T URRRLLY
160 160} -
140 140- o O/ _
120 120- _-
% 80 % 30_ _____________
I 2-socket [
60 /59_ _
wl 1 CPU node -
L 40_ NVIDIA K20]
20 20 -
oo 10 20 30 40 50 60 ok PP E—
Threads . Threaz:l g 10 10

(c) RRZE 2015

Microbenchmarking 11

Bandwidth limitations: Outer-level cache
Scalability of shared data paths in L3 cache

30‘0‘ T T T | T T T | T T B Westmere [L3} |
- #—& Sandy Bridge (L3) -
#—8 Interlagos (1.3)
2501 O O Interlagos (12) | O~
B - i
-~
) -
1%1 2001 el SB: I |
/M . New scalable Py |
< L3 design -7
e
< O .- AMD:]
'3 B e ~ Optimize tor L2 cachel] |
=
= | _
3 100

50

[INUMA domain|; 2 NUMA domgins, , , |
0 4 8 12 16

cores

(c) RRZE 2015 Microbenchmarking 12

likwid-bench
Microbenchmarking application/platform

likwid-bench ...
Is an extensible, flexible benchmarking framework
allows rapid development of low level kernels
already includes many ready to use threaded benchmark kernels

Benchmarking runtime cares for:
Thread management and placement
Data allocation and NUMA aware initialization
Timing and result presentation

likwid-bench focuses on assembly code interface and
therefore keeps out programming model or compiler issues

(c) RRZE 2015 Microbenchmarking 13

likwid-bench Example

Implement micro benchmark in abstract assembly

The benchmark file is automatically converted, compiled
and added to the benchmark application

Benchmark files are located in the ./bench directory
$ likwid-bench -t clcopy -g 1 —-i 1000 -w SO:1MB:2

$ likwid-bench -t load -g 2 -i 100 -w S1:1GB -w S0:1GB-
0:51,1:S0

STREAMS 2
TYPE DOUBLE
FLOPS O
BYTES 16
LOOP 32
movaps
movaps
movaps
movaps
movaps
movaps
movaps
movaps

+

+
STR1 + GPRI1
STR1 +

—/ /o

(c) RRZE 2015 Microbenchmarking 14

likwid-bench command line syntax

likwid-bench -h
likwid-bench -a list available benchmarks

Required options:
likwid-bench -t copy -g 1 -w S1:1GB
-t <benchmark case>

-g <# thread groups> need equivalent # working groups

-w <thread domain>:<working set size (kB;, MB or GB)>

Specify number of threads (Default: all processofs in thread domain):
likwid-bench -t copy -g 1 -w S1:1GB:2

Specify data placement (Default: in same NUMA domain as threads):
likwid-bench -t copy g 1 -w S1:1GB:2-0:S0,1:S1

(c) RRZE 2015 Microbenchmarking 15

Epilogue: Consequences from the saturation pattern

Clearly distinguish between “saturating” and “scalable” performance
on the chip level

f—

=
f—
(]

[=) o0
f—
=

I

Performance [arb. units]
1

Performance [arb. units]
=

- saturating scalable
2 type y type

Cores Cores

(c) RRZE 2015 Microbenchmarking 16

Epilogue: Consequences from the saturation pattern [m'—

There is no clear bottleneck for single-core execution
Code profile for single thread # code profile for multiple threads

- Single-threaded profiling may be misleading

I
I
runtime

L

Performance [arb, units]
[= >) =
-~
w
=
-
nance [arb,

12 3 4 5 6 7 %

Performance [arb, units]

[= >) =
w
=
-

8 threads

12 3 4 5 6 7 %

(c) RRZE 2015 Microbenchmarking 17

OpenMP performance issues
on multicore

Synchronization (barrier) overhead

The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop

double precision, dimension(:), allocatable

allocate(A(1l:N),B(1:N),C(1:N),D(1:N))
A=1.d0; B=A; C=A; D=A
'SOMP PARALLEL private (i, j)
do j=1,NITER
1SOMP DO
do i=1,N
A(i) = B(i) + C(i) * D(1i)

enddo /I Implicit barrier
1SOMP END DO

if (.something.that.is.never.true.) then
call dummy (A,B,C,D)
endif
enddo
!SOMP END PARALLEL

(c) RRZE 2015 Microbenchmarking

19

OpenMP vector triad on Sandy Bridge socket (3 GHz)

- | IIIIIII| ! LU | IIIIIII| ! IIIIIII| | IIIIIII| H

35+)

i —_ T=1]
— T=8 (1 socket)

30~ | — T=16 (2 sockets)]

2
Ln
!

sync
overhead
grows with #
of threads

[a—
Ln
|

Performance [GFlop/s]
[
>
|

=
=

5 6

10 10° 10 10* 10 10
Loop length

(c) RRZE 2015 Microbenchmarking

bandwidth
scalability
across
memory
interfaces

20

Welcome to the multi-/many-core era rr—|—
Synchronization of threads may be expensive!

!SOMP PARALLEL ..

Threads are synchronized at explicit AND

| SOMP BARRIER implicit barriers. These are a main source of
1 SOMP DO overhead in OpenMP progams.

1SOMP ENDDO Determine costs via modified OpenMP
SOMP END PARALLEL Microbenchmarks testcase (epcc)

On x86 systems there is no hardware support for synchronization!
Next slide: Test OpenMP Barrier performance...
for different compilers

and different topologies:
shared cache
shared socket
between sockets
and different thread counts
2 threads
full domain (chip, socket, node)

(c) RRZE 2015 Microbenchmarking 21

Thread synchronization overhead on SandyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC4.7.0 GCC4.6.1
Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

. Gcec still not very competitive

Intel compiler

Full domain Intel 13.1.0 GCC4.7.0 GCC4.6.1
Socket 1497 14546 14418
Node 3401 34667 29788
Node +SMT 6881 59038 58898

(c) RRZE 2015

Microbenchmarking

Thread synchronization overhead on Intel Xeon Phi
Barrier overhead in CPU cycles

2 threads on

distinct cores:
1936 \

SMT1 SMT2 SMT3 SMT4
One core \\ n/a 1597 2825 3557
Full chip 10604 12800 15573 18490

Still the pain may be much larger, as more work can be done in one cycle
on Phi compared to a full Sandy Bridge node

3.75x cores (16 vs 60) on Phi
2X more operations per cycle on Phi

=2 2-3.75=7.5x more work done on Xeon Phi per cycle

2.7x more barrier penalty (cycles) on Phi

- One barrier causes 2.7 - 7.5 = 20x more pain ©.

(c) RRZE 2015 Microbenchmarking 23

Conclusions from the microbenchmarks

Affinity matters!
Almost all performance properties depend on the position of
Data
Threads/processes
Conseqguences
Know where your threads are running
Know where your data is

Bandwidth bottlenecks are ubiquitous

Synchronization overhead may be an issue
... and also depends on affinity!
Many-core poses new challenges in terms of synchronization

(c) RRZE 2015 Microbenchmarking

24

