
M. Haefele - 2016

Architectures & application
performance improvement: the HPC
user point of view

9-13 May 2016, Saint Germain au Mont d’Or

Matthieu Haefele1

1 Maison de la Simulation

Acknoledgments: M. Snir, G. Hager, G.

Wellein, L. Saugé, J. Bigot, M. Klemm, A.

Koehler

M. Haefele - 2016

External material

This presentation makes use of several materials that could be
retrieved on the web here:

Presentations from G. Hager and G. Wellein during
PATC@LRZ on node level engineering1

Node architecture
Roofline model
Microbenchmarking

Presentation from M. Klemm on Xeon Phi architecture
during GENCI workshop
Presentation from A. Koehler on OpenPower architecture
Presentation from M. Snir on future architecture at ICS
conference 2014

1http://moodle.rrze.uni-erlangen.de/course/view.php?
id=274&username=guest&password=guest

http://moodle.rrze.uni-erlangen.de/pluginfile.php/11954/mod_resource/content/1/01_IntroArchitecture.pdf
http://moodle.rrze.uni-erlangen.de/pluginfile.php/11957/mod_resource/content/1/04_Roofline_Model.pdf
http://moodle.rrze.uni-erlangen.de/pluginfile.php/11956/mod_resource/content/1/03_Microbenchmarking.pdf
http://not_available
http://not_available
http://www.fz-juelich.de/SharedDocs/Downloads/IAS/JSC/EN/slides/nvidia-ws-2014/08-koehler-openpower.pdf?__blob=publicationFile
http://snir.cs.illinois.edu/PDF/keynote snir ICS.pdf
http://snir.cs.illinois.edu/PDF/keynote snir ICS.pdf
http://moodle.rrze.uni-erlangen.de/course/view.php?id=274&username=guest&password=guest
http://moodle.rrze.uni-erlangen.de/course/view.php?id=274&username=guest&password=guest

M. Haefele - 2016

Outline

Hardware
CPU vs Accelerator type
Quick look in the future

Software
Scalability and performance
Programming models
Performance improvement

Production codes & human factor

M. Haefele - 2016

Outline: Hardware

Recent CPU architectures (Intel Xeon and AMD Bulldozer)
General architecture of a cached based processor
Pipeline
Superscalar processors (ILP)
Simultaneous multi-threading (SMT)
Single Instruction Multiple Data (SIMD)
Memory hierarchy
UMA vs ccNUMA
Peak performance

Intel Xeon Phi KNL
IBM OpenPower: IBM Power CPU + NVidia GPU
Comparison
Hardware perspectives in the future

M. Haefele - 2016

External material

P6-17 from Node architecture slides

M. Haefele - 2016

Memory hierarchy

Registers

Caches

On-chip Memory

DRAM

NVRAM
Storage

S
iz

e

B
an

dw
id

th

La
te

nc
y

new

new

M. Haefele - 2016

External material

P18-21 from Node architecture slides

M. Haefele - 2016

External material

Xeon Phi KNL presentation

M. Haefele - 2016

External material

OpenPower presentation

M. Haefele - 2016

Architecture comparison

Proc. 2x Intel
Haswell

Intel KNL NVidia Pascal

Techno. 22nm 14nm 16nm
#cores 24 up to 72 ??
SMT 2 4 N.A
Mem 128-512 GiB

DRAM
16GB MCDRAM + 384
GB DRAM

16GB on Chip

Peak perf. 0.96 TF/s 3 TF/s 3 TF/s
Mem band. 100GB/s 500GB/s MCDRAM? +

??DRAM
1TB/s? on
chip + 50GB/s?
NVLink

Power 240W ?? ??

M. Haefele - 2016

Architecture comparison

Crucial issues:
Memory management
Intra-node parallelization

Justification for these new architectures: power requirement

M. Haefele - 2016

External material

M. Snir presentation

M. Haefele - 2016

Outline: Software

Scalability and performance
Definition
Performance model: roofline model

Programming models
A not exhaustive list
Zoom on OpenMP
Topology awareness of the programming model

Performance improvement
Performance measurement
Code optimisation

Load balancing
Vectorization
Arithmetic intensity increase: blocking

M. Haefele - 2016

External material

Introduction to the roofline model and the microbenchmarking.

M. Haefele - 2016

Programming models

Distributed-memory (inter-node)
MPI
PVM (gone)
PGAS: CoArray Fortran, UPC
X10, Chapel, Julia, . . .

Shared-memory (intra-node)
OpenMP
Posix threads, Intel Threading Building Blocks (TBB), Cilk+,
. . .
Accelerator: Cuda, OpenCL, OpenAcc
Runtime systems: StarPu, XKaapi, OmpSs, . . .

M. Haefele - 2016

Programming models cont.

Hybrid
MPI+OpenMP
Pure MPI
MPI + any shared-memory model
MPI (+OpenMP) + any accelerator
MPI + any runtime systems

M. Haefele - 2016

OpenMP programming models

1. Coarse grain: work distribution w.r.t. thread id (MPI like)
2. OMP DO (or FOR): Fine grain
3. OMP Task: much more tasks than threads⇒ need for

scheduling
⇒ Runtime systems can be plugged in here
4. OMP Target: offload directives for accelerators

OpenMP is a norm gathering now several programming
models!

M. Haefele - 2016

Performance measurement

”Measuring is always better than guessing”
Brian Wylie, Scalasca developer

Application/routine level
Hot spots
Load imbalances
Communication / IO overheads

Kernel level
Performance models
Code optimisation

M. Haefele - 2016

Performance measurement tools

Application/routine level
Alinea performance report: nice performance overview of
a code with information gathered from a single run
ScoreP/Scalasca: profiling and tracing based on source
code instrumentation methods
Intel VTune : profiling and tracing based on runtime
hardware counter sampling methods
Extrae/Paraver: profiling and tracing based on runtime
hardware counter sampling methods
Darshan : IO measurements
Unix time command: time measurements
IdrMem: memory footprint measurements
PAPI: hardware counters extraction

M. Haefele - 2016

Performance measurement tools

Kernel level
Intel advisor: vectorization quality evaluation
Compiler logs: vectorization quality evaluation
Manual instrumentation: performance measurement

M. Haefele - 2016

EoCoE

Energy oriented Centre of Excellence

M. Haefele - 2016

EoCoE: Performance evaluation

23 codes in the consortium
Definition of a single set of 31 standard metrics
Automated extraction process with JUBE

4 compilations
7 runs

M. Haefele - 2016

Vectorization

do i = ibeg w , iend w
vsumzk0=0.0d0
do j = nummove+1 ,num

i f (i == j) then
vsumzk0=vsumzk0+q (j)∗ sq rp i e ta

else
z i j =z (i)−z (j)
z i j s q = z i j ∗ z i j
r e r f = e r f (eta∗ z i j)
vsumzk0=vsumzk0+q (j) ∗ ((sq rp i e ta ∗exp(−etasq∗ z i j s q))+&

(p i ∗ z i j ∗ r e r f))
end i f

enddo
cgpot (i)= cgpot (i)−vsumzk0

enddo

M. Haefele - 2016

Vectorization

The if statement introduces an issue
The iteration j = i executes different code than j = i − 1
and j = i + 1

⇒ This code cannot be SIMD
⇒ The whole j loop is not vectorized

The else part is also true for j = i
⇒ Just suppress the if statement to win a factor 3.2 on this

kernel with AVX

M. Haefele - 2016

Production codes & human factor

Example: the Gysela5D code
Software engineering
The next step

M. Haefele - 2016

The Gysela5D code: institution

Developed at CEA (IRFM)
Scientific area: turbulence in tokamaks (fusion devices)
Gyrokinetic model + quasi-neutrality equation (5D + t)
91% relative efficiency on the full BlueGene/Q @ JSC (1.8
M threads)

M. Haefele - 2016

The Gysela5D code: software

5 core developers: mostly computer scientists and applied
mathematicians
10 users: physicists
60k lines of Fortran90 + 13k lines of C
174k lines modification spread over 1700 commits (year
2014)
33 releases: 16 features + 17 bugfix (year 2014)
10 target paltforms at any point in time

M. Haefele - 2016

An HPC development workflow

M. Haefele - 2016

Continuous integration

Several tests implemented:
82 different compilations (30 minutes)
13 bitwise comparison test runs (4 minutes)
15 ”unit tests” (4 minutes)
5 system tests on 64 cores (11 minutes)

Execution:
Automated with Jenkins
run within VMs on the INRIA CI platform
run on MdlS poincare cluster

M. Haefele - 2016

Still not enough. . .

InKS (Independent Kernel Scheduling) disentangles the
algorithm from the implementation
PDI (Parallel Data Interface) disentangles the IO package
used from the implementation
Continuous integration platform on production machines
set up within EoCoE

M. Haefele - 2016

EoCoE: CI on HPC infrastructure

Hardware and software stack different on different
machines
Needs for running tests on production machines
Security issues

An HPC continuous integration infrastructure will be deployed
@IDRIS

M. Haefele - 2016

EoCoE: PDI

Parallel Data Interface
The appropriate IO package depends on your needs and
on the machine
Your needs evolve, the machines too !
Now: for each evolution, new implementation with ifdefs
With PDI: no code change, changes localized in separate
configuration files

M. Haefele - 2016

Conclusion

Hardware: exascale machines will be around for 2022 or
so and will be likely accelerator based
Software: MPI+OpenMP will likely remain the standard

⇒ The jump to make in programming style is for pre-exascale
machines
Maintaining HPC production codes is a complex task from
the software engineering point of view

M. Haefele - 2016

Conclusion cont.

OpenMP Task + RunTime systems sound like a nice
solution for intra-node parallelization
Beyond exascale, dedicated hardware is expected to
emerge. It will likely not be X86 compatible and will
probably not have a fortran compiler. That will become
interesting ;)

Messages:
To mathematicians:

At order zero, computing is free, moving data is expensive
Privilege algorithms that could benefit from asynchronism

To compiler people:
Help us generating efficient source codes
Help us managing software engineering issues

