
“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

(1) Samuel Williams, Andrew Waterman, David Patterson, Communications of the ACM, Vol. 52 No. 4, Pages 65-76 10.1145/1498765.1498785

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

2

Prelude: Modeling customer dispatch in a bank

(c) RRZE 2014 Roofline Model

Revolving door

throughput:

bS [customers/sec]

Intensity:

I [tasks/customer]

Processing

capability:

Pmax [tasks/sec]

3

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆 :
Best use of resources

 Roofline is an “optimistic” model

(“light speed”)

(c) RRZE 2014 Roofline Model

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a
n
c
e

Pmax

4

The Roofline Model

(c) RRZE 2015 Node-Level Performance Engineering

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures. Journal for Parallel and Distributed Computing 5(4),

334 (1988). DOI: 10.1016/0743-7315(88)90002-0
W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

1. Pmax = Applicable peak performance of a loop, assuming that data

comes from the level 1 cache (this is not necessarily Ppeak)

 e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (code balance BC = I -1)

 e.g., I = 0.167 Flop/Byte  BC = 6 Byte/Flop

3. bS = Applicable peak bandwidth of the slowest data path utilized

 e.g., bS = 56 GByte/s

Expected performance:

𝑃 = min 𝑃max , 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

5

Preliminary: Estimating Pmax

How to perform a instruction throughput analysis on the example of Intel’s

port based scheduler model

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

SandyBridge

16b 16b 16b

(c) RRZE 2014 Roofline Model

First-order assumption: All instructions in a loop are fed independently to the

various ports/pipelines

Complex cases (dependencies, hazards): Add penalty cycles / use tools

(Intel IACA, Intel Amplifier)

6

Throughput capabilities of the Intel Sandy Bridge core

 Per cycle with AVX

 1 load instruction (256 bits) AND ½

store instruction (128 bits)

 1 AVX MULT and 1 AVX ADD

instruction

(4 DP / 8 SP flops each)

 Per cycle with SSE or scalar

 2 load instruction OR 1 load and 1

store instruction

 1 MULT and 1 ADD instruction

 Overall maximum of 4 micro-ops

 In practice, 3 is more realistic

(c) RRZE 2014 Roofline Model

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

7

Preliminary: Estimating Pmax

Every new CPU generation provides incremental improvements.

Port 0 Port 1 Port 5Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

(c) RRZE 2014 Roofline Model

8

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

How many cycles to process one AVX-vectorized iteration

(one core)?

 Equivalent to 4 scalar iterations

Cycle 1: LOAD + ½ STORE + MULT + ADD

Cycle 2: LOAD + ½ STORE

Cycle 3: LOAD Answer: 3 cycles

(c) RRZE 2014 Roofline Model

9

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

What is the performance in GFlops/s and the bandwidth in GBytes/s?

One AVX iteration (3 cycles) does 4 x 2 = 8 flops:

3.0 ∙ 109 cy/s

3 cy
∙ 4 updates ∙

2 flops

update
= 𝟖

Gflops

s

4 ∙ 109
updates

s
∙ 32

bytes

update
= 128

Gbyte

s

(c) RRZE 2014 Roofline Model

Homework 

10

Pmax + bandwidth limitations: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 3 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 I = 0.4 F/W = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.04 % of peak performance)

 Ppeak = 192 Gflop/s (8 cores x (4+4) Flops/cy x 3.0 GHz)

 Pmax = 8 x 8 Gflop/s = 64 Gflop/s (33% peak)

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 64,2.0 GFlop s
= 2.0 GFlop s

(c) RRZE 2014 Roofline Model

11

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2014 Roofline Model

ADD peak

(best possible

code)

no SIMD

3-cycle latency

per ADD if not

unrolled

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

How do we

get these?
 See next!

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak

(ADD+MULT)

Out of reach for this

code

P
(better loop code)

12

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0  0

i  1

loop:

LOAD r2.0  a(i)

ADD r1.0  r1.0+r2.0

++i ? loop

result  r1.0

(c) RRZE 2014 Roofline Model

ADD pipes utilization:

 1/24 of ADD peak

S
IM

D
 l
a
n

e
s

Pattern!

Pipelining
issues

13

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0  0

LOAD r2.0  0

LOAD r3.0  0

i  1

loop:

LOAD r4.0  a(i)

LOAD r5.0  a(i+1)

LOAD r6.0  a(i+2)

ADD r1.0  r1.0 + r4.0

ADD r2.0  r2.0 + r5.0

ADD r3.0  r3.0 + r6.0

i+=3 ? loop

result  r1.0+r2.0+r3.0

(c) RRZE 2014 Roofline Model

ADD pipes utilization:

 1/8 of ADD peak

14

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.7]  [0,…,0]

LOAD [r2.0,…,r2.7]  [0,…,0]

LOAD [r3.0,…,r3.7]  [0,…,0]

i  1

loop:

LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)]

LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)]

LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)]

ADD r1  r1 + r4

ADD r2  r2 + r5

ADD r3  r3 + r6

i+=24 ? loop

result  r1.0+r1.1+...+r3.6+r3.7

(c) RRZE 2014 Roofline Model

ADD pipes utilization:

 ADD peak

Pattern!ALU

saturation

15

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

in single precision

(c) RRZE 2014 Roofline Model

analysis

Code analysis:

1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)

Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

16

Prerequisites for the Roofline Model

(c) RRZE 2014 Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Either the limit is core execution or it is data transfer

 Slowest limiting factor “wins”; all others are assumed

to have no impact

 Latency effects are ignored, i.e. perfect streaming mode

17

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 Limit is linear in # of cores

(c) RRZE 2014 Roofline Model

18

Complexities of in-core execution

Multiple bottlenecks:

 Decode/retirement

throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 L1 Icache (LD/ST) bandwidth

 Alignment issues

 …

(c) RRZE 2014 Roofline Model

20

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Ninja C++  Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking [see later])

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias [see later])

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation
(e.g., scalar  SIMD)

(c) RRZE 2014 Roofline Model

Perl

21

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap perfectly

 It is not sufficient to measure single-core STREAM to make it work

 Only increased “pressure” on the memory

interface can saturate the bus
 need more cores!

 In-cache performance is not correctly

predicted

 The ECM performance model gives more

insight:

A(:)=B(:)+C(:)*D(:)

(c) RRZE 2014 Roofline Model

G. Hager, J. Treibig, J. Habich, and G. Wellein:Exploring

performance and power properties of modern multicore chips
via simple machine models.Concurrency and Computation:
Practice and Experience (2013).

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

