
“Simple” performance modeling:

The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

(1) Samuel Williams, Andrew Waterman, David Patterson, Communications of the ACM, Vol. 52 No. 4, Pages 65-76 10.1145/1498765.1498785

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

2

Prelude: Modeling customer dispatch in a bank

(c) RRZE 2014 Roofline Model

Revolving door

throughput:

bS [customers/sec]

Intensity:

I [tasks/customer]

Processing

capability:

Pmax [tasks/sec]

3

Prelude: Modeling customer dispatch in a bank

How fast can tasks be processed? 𝑷 [tasks/sec]

The bottleneck is either

 The service desks (max. tasks/sec): 𝑃max
 The revolving door (max. customers/sec): 𝐼 ∙ 𝑏𝑆

This is the “Roofline Model”

 High intensity: P limited by “execution”

 Low intensity: P limited by “bottleneck”

 “Knee” at 𝑃𝑚𝑎𝑥 = 𝐼 ∙ 𝑏𝑆 :
Best use of resources

 Roofline is an “optimistic” model

(“light speed”)

(c) RRZE 2014 Roofline Model

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

Intensity

P
e

rf
o

rm
a
n
c
e

Pmax

4

The Roofline Model

(c) RRZE 2015 Node-Level Performance Engineering

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures. Journal for Parallel and Distributed Computing 5(4),

334 (1988). DOI: 10.1016/0743-7315(88)90002-0
W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)

S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

1. Pmax = Applicable peak performance of a loop, assuming that data

comes from the level 1 cache (this is not necessarily Ppeak)

 e.g., Pmax = 176 GFlop/s

2. I = Computational intensity (“work” per byte transferred) over the

slowest data path utilized (code balance BC = I -1)

 e.g., I = 0.167 Flop/Byte BC = 6 Byte/Flop

3. bS = Applicable peak bandwidth of the slowest data path utilized

 e.g., bS = 56 GByte/s

Expected performance:

𝑃 = min 𝑃max , 𝐼 ∙ 𝑏𝑆 = min 𝑃max,
𝑏𝑆
𝐵𝐶

[Byte/s]

[Byte/Flop]

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

5

Preliminary: Estimating Pmax

How to perform a instruction throughput analysis on the example of Intel’s

port based scheduler model

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

SandyBridge

16b 16b 16b

(c) RRZE 2014 Roofline Model

First-order assumption: All instructions in a loop are fed independently to the

various ports/pipelines

Complex cases (dependencies, hazards): Add penalty cycles / use tools

(Intel IACA, Intel Amplifier)

6

Throughput capabilities of the Intel Sandy Bridge core

 Per cycle with AVX

 1 load instruction (256 bits) AND ½

store instruction (128 bits)

 1 AVX MULT and 1 AVX ADD

instruction

(4 DP / 8 SP flops each)

 Per cycle with SSE or scalar

 2 load instruction OR 1 load and 1

store instruction

 1 MULT and 1 ADD instruction

 Overall maximum of 4 micro-ops

 In practice, 3 is more realistic

(c) RRZE 2014 Roofline Model

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

7

Preliminary: Estimating Pmax

Every new CPU generation provides incremental improvements.

Port 0 Port 1 Port 5Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

(c) RRZE 2014 Roofline Model

8

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

How many cycles to process one AVX-vectorized iteration

(one core)?

 Equivalent to 4 scalar iterations

Cycle 1: LOAD + ½ STORE + MULT + ADD

Cycle 2: LOAD + ½ STORE

Cycle 3: LOAD Answer: 3 cycles

(c) RRZE 2014 Roofline Model

9

Example: Estimate Pmax of vector triad on SandyBridge

double *A, *B, *C, *D;

for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i];

}

What is the performance in GFlops/s and the bandwidth in GBytes/s?

One AVX iteration (3 cycles) does 4 x 2 = 8 flops:

3.0 ∙ 109 cy/s

3 cy
∙ 4 updates ∙

2 flops

update
= 𝟖

Gflops

s

4 ∙ 109
updates

s
∙ 32

bytes

update
= 128

Gbyte

s

(c) RRZE 2014 Roofline Model

Homework

10

Pmax + bandwidth limitations: The vector triad

Example: Vector triad A(:)=B(:)+C(:)*D(:)

on a 3 GHz 8-core Sandy Bridge chip (AVX vectorized)

 bS = 40 GB/s

 Bc = (4+1) Words / 2 Flops = 2.5 W/F (including write allocate)

 I = 0.4 F/W = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.04 % of peak performance)

 Ppeak = 192 Gflop/s (8 cores x (4+4) Flops/cy x 3.0 GHz)

 Pmax = 8 x 8 Gflop/s = 64 Gflop/s (33% peak)

𝑃 = min 𝑃max, 𝐼 ∙ 𝑏𝑆 = min 64,2.0 GFlop s
= 2.0 GFlop s

(c) RRZE 2014 Roofline Model

11

A not so simple Roofline example

Example: do i=1,N; s=s+a(i); enddo

in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N

(c) RRZE 2014 Roofline Model

ADD peak

(best possible

code)

no SIMD

3-cycle latency

per ADD if not

unrolled

P (worst loop code)

𝑃 = min(𝑃max, 𝐼 ∙ 𝑏𝑆)

How do we

get these?
 See next!

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak

(ADD+MULT)

Out of reach for this

code

P
(better loop code)

12

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0 0

i 1

loop:

LOAD r2.0 a(i)

ADD r1.0 r1.0+r2.0

++i ? loop

result r1.0

(c) RRZE 2014 Roofline Model

ADD pipes utilization:

 1/24 of ADD peak

S
IM

D
 l
a
n

e
s

Pattern!

Pipelining
issues

13

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0 0

LOAD r2.0 0

LOAD r3.0 0

i 1

loop:

LOAD r4.0 a(i)

LOAD r5.0 a(i+1)

LOAD r6.0 a(i+2)

ADD r1.0 r1.0 + r4.0

ADD r2.0 r2.0 + r5.0

ADD r3.0 r3.0 + r6.0

i+=3 ? loop

result r1.0+r2.0+r3.0

(c) RRZE 2014 Roofline Model

ADD pipes utilization:

 1/8 of ADD peak

14

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.7] [0,…,0]

LOAD [r2.0,…,r2.7] [0,…,0]

LOAD [r3.0,…,r3.7] [0,…,0]

i 1

loop:

LOAD [r4.0,…,r4.7] [a(i),…,a(i+7)]

LOAD [r5.0,…,r5.7] [a(i+8),…,a(i+15)]

LOAD [r6.0,…,r6.7] [a(i+16),…,a(i+23)]

ADD r1 r1 + r4

ADD r2 r2 + r5

ADD r3 r3 + r6

i+=24 ? loop

result r1.0+r1.1+...+r3.6+r3.7

(c) RRZE 2014 Roofline Model

ADD pipes utilization:

 ADD peak

Pattern!ALU

saturation

15

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo

in single precision

(c) RRZE 2014 Roofline Model

analysis

Code analysis:

1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy

Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory

bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)

Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

16

Prerequisites for the Roofline Model

(c) RRZE 2014 Roofline Model

 The roofline formalism is based on some (crucial) assumptions:

 There is a clear concept of “work” vs. “traffic”

 “work” = flops, updates, iterations…

 “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine effective

bandwidth via simple streaming benchmarks to model more complex

kernels and applications

 Data transfer and core execution overlap perfectly!

 Either the limit is core execution or it is data transfer

 Slowest limiting factor “wins”; all others are assumed

to have no impact

 Latency effects are ignored, i.e. perfect streaming mode

17

Factors to consider in the roofline model

Bandwidth-bound (simple case)

 Accurate traffic calculation (write-

allocate, strided access, …)

 Practical ≠ theoretical BW limits

 Erratic access patterns

Core-bound (may be complex)

 Multiple bottlenecks: LD/ST,

arithmetic, pipelines, SIMD,

execution ports

 Limit is linear in # of cores

(c) RRZE 2014 Roofline Model

18

Complexities of in-core execution

Multiple bottlenecks:

 Decode/retirement

throughput

 Port contention

(direct or indirect)

 Arithmetic pipeline stalls

(dependencies)

 Overall pipeline stalls

(branching)

 L1 Dcache bandwidth

(LD/ST throughput)

 Scalar vs. SIMD execution

 L1 Icache (LD/ST) bandwidth

 Alignment issues

 …

(c) RRZE 2014 Roofline Model

20

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good

serial code
(e.g., Ninja C++ Fortran)

2. Increase intensity to make

better use of BW bottleneck
(e.g., loop blocking [see later])

3. Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

4. Hit the core bottleneck by good

serial code
(e.g., -fno-alias [see later])

5. Shift Pmax by accessing

additional hardware features or

using a different

algorithm/implementation
(e.g., scalar SIMD)

(c) RRZE 2014 Roofline Model

Perl

21

Shortcomings of the roofline model

 Saturation effects in multicore chips are not explained

 Reason: “saturation assumption”

 Cache line transfers and core execution do sometimes not overlap perfectly

 It is not sufficient to measure single-core STREAM to make it work

 Only increased “pressure” on the memory

interface can saturate the bus
 need more cores!

 In-cache performance is not correctly

predicted

 The ECM performance model gives more

insight:

A(:)=B(:)+C(:)*D(:)

(c) RRZE 2014 Roofline Model

G. Hager, J. Treibig, J. Habich, and G. Wellein:Exploring

performance and power properties of modern multicore chips
via simple machine models.Concurrency and Computation:
Practice and Experience (2013).

DOI: 10.1002/cpe.3180 Preprint: arXiv:1208.2908

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

