
Introduction:

Modern computer architecture

The stored program computer and its inherent bottlenecks

Multi- and manycore chips and nodes

Motivation:

Multi-Cores – where and why

3(c) RRZE 2015 Basic Architecture

1965: G. Moore claimed

#transistors on “microchip”

doubles every 12-24 months

Introduction: Moore’s law

Intel Sandy Bridge EP: 2.3 Billion

Nvidia Kepler: 7 Billion

Multi-core today: Intel Xeon 2600v3 (2014)

 Xeon E5-2600v3 “Haswell EP”:

Up to 18 cores running at 2+ GHz (+ “Turbo Mode”: 3.5+ GHz)

 Simultaneous Multithreading

 reports as 36-way chip

 5.7 Billion Transistors / 22 nm

 Die size: 662 mm2

2-socket server

(c) RRZE 2015 Basic Architecture 6

.

Optional:
“Cluster on Die”
(CoD) mode

A deeper dive into core and chip

architecture

General-purpose cache based microprocessor core

 Implements “Stored
Program Computer”
concept (Turing 1936)

 Similar designs on all
modern systems

 (Still) multiple potential
bottlenecks

 Flexible!

(c) RRZE 2015 Basic Architecture

Stored-program computer

Modern CPU core

8

Basic resources on a stored program computer

Instruction execution and data movement

1. Instruction execution

This is the primary resource of the processor. All efforts in hardware design

are targeted towards increasing the instruction throughput.

Instructions are the concept of “work” as seen by processor designers.

Not all instructions count as “work” as seen by application developers!

Example: Adding two arrays A(:) and B(:)

do i=1, N

A(i) = A(i) + B(i)

enddo

(c) RRZE 2015

User work:
N Flops (ADDs)

Processor work:
LOAD r1 = A(i)

LOAD r2 = B(i)

ADD r1 = r1 + r2

STORE A(i) = r1

INCREMENT i

BRANCH top if i<N

Basic Architecture 9

Basic resources on a stored program computer

Instruction execution and data movement

2. Data transfer

Data transfers are a consequence of instruction execution and therefore a

secondary resource. Maximum bandwidth is determined by the request rate

of executed instructions and technical limitations (bus width, speed).

Example: Adding two arrays A(:) and B(:)

do i=1, N

A(i) = A(i) + B(i)

enddo

Crucial question: What is the bottleneck?

 Data transfer?

 Code execution?

(c) RRZE 2015 10Basic Architecture

Data transfers:
8 byte: LOAD r1 = A(i)

8 byte: LOAD r2 = B(i)

8 byte: STORE A(i) = r2

Sum: 24 byte

Microprocessors – Pipelining

Pipelining of arithmetic/functional units

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g., a single cycle

 Execute different steps on different instructions at the same time (in parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent instructions
instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

(c) RRZE 2015 Basic Architecture 12

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) RRZE 2015 Basic Architecture 13

Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode

instruction

Execute

Instruction

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4

(c) RRZE 2015 Basic Architecture 14

Microprocessors – Superscalarity and

Simultaneous Multithreading

 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar &

can perform 2 floating point instructions per cycles

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way

„superscalar“

t

(c) RRZE 2015 Basic Architecture 16

Core details: Simultaneous multi-threading (SMT)

(c) RRZE 2015 Basic Architecture

St
an

d
ar

d
 c

o
re

2
-w

ay
 S

M
T

SMT principle (2-way example):

17

Microprocessors –

Single Instruction Multiple Data (SIMD)

a.k.a. vectorization

Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point

operands

(c) RRZE 2015 Basic Architecture
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

19

Microprocessors –

Memory Hierarchy

Registers and caches: Data transfers in a memory hierarchy

 Caches help with getting instructions and data to the CPU “fast”

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2015 Basic Architecture

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1)MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)

21

Today: Dual-socket node

Yesterday (2006): Dual-socket Intel “Core2” node

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the

price of ccNUMA architectures: Where

does my data finally end up?

On AMD it is even more complicated ccNUMA within a socket!

From UMA to ccNUMA
Basic architecture of commodity multi-socket nodes

(c) RRZE 2015 22Basic Architecture

Cray XC30 “SandyBridge-EP” 8-core dual socket node

 8 cores per socket 2.7 GHz

(3.5 @ turbo)

 DDR3 memory interface with 4

channels per chip

 Two-way SMT

 Two 256-bit SIMD FP units

 SSE4.2, AVX

 32 kB L1 data cache per core

 256 kB L2 cache per core

 20 MB L3 cache per chip

(c) RRZE 2015 Basic Architecture 23

There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

(1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

(256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

(c) RRZE 2015 26Basic Architecture

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s for serial, non-SIMD code

TOP500 rank 1 (mid-90s)

Interlude:

A glance at current accelerator

technology

NVIDIA Kepler GK110 Block Diagram

Architecture

 7.1B Transistors

 15 “SMX” units

 192 (SP) “cores” each

 > 1 TFLOP DP peak

 1.5 MB L2 Cache

 384-bit GDDR5

 PCI Express Gen3

 3:1 SP:DP performance

© NVIDIA Corp. Used with permission.

(c) RRZE 2015 Basic Architecture 28

Intel Xeon Phi block diagram

Architecture

 3B Transistors

 60+ cores

 512 bit SIMD

 ≈ 1 TFLOP

DP peak

 0.5 MB

L2/core

 GDDR5

 2:1 SP:DP

performance

64 byte/cy

(c) RRZE 2015 Basic Architecture 29

Trading single thread performance for parallelism:

GPGPUs vs. CPUs

GPU vs. CPU

light speed estimate:

1. Compute bound: 2-10x

2. Memory Bandwidth: 1-5x

Intel Core i5 – 2500
(“Sandy Bridge”)

Intel Xeon E5-2680 DP
node (“Sandy Bridge”)

NVIDIA K20x
(“Kepler”)

Cores@Clock 4 @ 3.3 GHz 2 x 8 @ 2.7 GHz 2880 @ 0.7 GHz

Performance+/core 52.8 GFlop/s 43.2 GFlop/s 1.4 GFlop/s

Threads@STREAM <4 <16 >8000

Total performance+ 210 GFlop/s 691 GFlop/s 4,000 GFlop/s

Stream BW 18 GB/s 2 x 40 GB/s 168 GB/s (ECC=1)

Transistors / TDP 1 Billion* / 95 W 2 x (2.27 Billion/130W) 7.1 Billion/250W

* Includes on-chip GPU and PCI-Express+ Single Precision Complete compute device

(c) RRZE 2015 Basic Architecture 31

Node topology and

programming models

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2015 Basic Architecture 33

Scalable and saturating behavior

 Clearly distinguish between “saturating” and “scalable” performance

on the chip level

(c) RRZE 2015

shared resources
may show
saturating
performance

parallel
resources show
scalable
performance

Basic Architecture 34

Parallel programming models

on modern compute nodes

 Shared-memory (intra-node)

 Good old MPI

 OpenMP

 POSIX threads

 Intel Threading Building Blocks (TBB)

 Cilk+, OpenCL, StarSs,… you name it

 Distributed-memory (inter-node)

 MPI

 PVM (gone)

 Hybrid

 Pure MPI

 MPI+OpenMP

 MPI + any shared-memory model

 MPI (+OpenMP) + CUDA/OpenCL/…

(c) RRZE 2015 35Basic Architecture

All models require

awareness of topology and

affinity issues for getting

best performance out of

the machine!

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

 Very simple programming model

 MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

(c) RRZE 2015 Basic Architecture 36

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

 Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

(c) RRZE 2015 Basic Architecture 37

Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

(c) RRZE 2015 38Basic Architecture

Conclusions about architecture

 Modern computer architecture has a rich “topology”

 Node-level hardware parallelism takes many forms

 Sockets/devices – CPU: 1-8, GPGPU: 1-6

 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)

 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

 Superscalarity (CPU: 2-6)

 Exploiting performance: parallelism + bottleneck awareness

 “High Performance Computing” == computing at a bottleneck

 Performance of programs is sensitive to architecture

 Topology/affinity influences overheads of popular programming models

 Standards do not contain (many) topology-aware features

 Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)

 Apart from overheads, performance features are largely independent of the
programming model

(c) RRZE 2015 Basic Architecture 39

