“Simple” performance modeling:
The Roofline Model

Loop-based performance modeling: Execution vs. data transfer

Example: array summation

@ Samuel Williams, Andrew Waterman David Patterson Communlcatlons of the ACM, Vol. 52 No. 4, Pages 65 76 10. 1145/1498765 1498785

http://cacm.acm.org/magazines/2009/4/22959-roofline-an-insightful-visual-performance-model-for-multicore-architectures/fulltext

Prelude: Modeling customer dispatchin a bank

Revolving door
throughput:
bs [customers/sec]

9. Processing
oo S » -
M y S N capability:
Pmax [tasks/sec]

Intensity:
| [tasks/customer]

(c) RRZE 2014 Roofline Model 2

Prelude: Modeling customer dispatchin a bank

How fast can tasks be processed? P [tasks/sec]

Thebottleneckis either
The service desks (max. tasks/sec): Pmax
The revolving door (max. customers/sec): I - b

P =min(Pyax [- bs)

N
7

This is the “Roofline Model”
High intensity: P limited by “execution”

Performance

Low intensity: P limited by “bottleneck’” i
Best use of resources

Roofline is an “optimistic” model

(“light speed”) Intensity

(c) RRZE 2014 Roofline Model 3

The Roofline Model FFEE

P.ax = Applicable peak performance of a loop, assuming that data
comes from the level 1 cache (this is not necessarily Pqqy)

- e.g., Pyhax = 176 GFlop/s

| = Computational intensity (“work” per byte transferred) over the
slowest data path utilized (code balance B =11)
- e.g.,1 =0.167 Flop/Byte - B = 6 Byte/Flop

bs = Applicable peak bandwidth of the slowest data path utilized
- e.g., bg = 56 GByte/s [Byte/s]

4

Expected performance: b
S

P = min(P.y, I - bg) = min|(P,

ax’ B C [Byte/Flop]

D. Callahan et al.: Estimating interlock and improving balance for pipelined architectures. Journal for Parallel and Distributed Computing 5(4),
334 (1988). DOI: 10.1016/0743-7315(88)90002-0

W. Schoénauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)
S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

(c) RRZE 2015 Node-Level Performance Engineering 4

http://dx.doi.org/10.1016/0743-7315(88)90002-0
http://www.rz.uni-karlsruhe.de/~rx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

Preliminary: Estimating P, ., rr?:

How to perform a instruction throughput analysis on the example of Intel’s
port based scheduler model

Wous| [anl [Powm [Pons [[BoEE SancyBridge

ALU ALU LOAD LOAD STORE ALU

16bT 16bT 16b¢ JumP

Retire 4 uops

First-order assumption: All instructions in a loop are fed independently to the
various ports/pipelines

Complex cases (dependencies, hazards): Add penalty cycles / use tools
(Intel IACA, Intel Amplifier)

(c) RRZE 2014 Roofline Model 5

Throughput capabilities of the Intel Sandy Bridge core [T ='—
Per cycle with AVX
1 load instruction (256 bits) AND Y2 BN NN N .
store instruction (128 bits) ALU AU LOAD LOAD STORE ALU
1 AVX MULT and 1 AVX ADD Eol S8 v A FSHUF
instruction
(4 DP / 8 SP flops each) uwe

Per cycle with SSE or scalar

2 load instruction OR 1 load and 1
store instruction

1 MULT and 1 ADD instruction

Overall maximum of 4 micro-ops
In practice, 3 is more realistic

(c) RRZE 2014 Roofline Model 6

Preliminary: Estimating P, .,

Every new CPU generation provides incremental improvements.

ALU ALU LOAD LOAD STORE ALU ALU AGU

FMUL 32b1\ 32bT 32b¢ JumP

Retire 4 uops Haswell

(c) RRZE 2014 Roofline Model 7

Example: Estimate P,,,, of vector triad on SandyBridge rr?—

e e

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
A[i] = B[1i] + C[1i] * D[1i];

How many cyclesto process one AVX-vectorized iteration
(one core)?

- Equivalent to 4 scalar iterations

Cycle 1. LOAD + %2 STORE + MULT + ADD
Cycle 2. LOAD + ¥ STORE
Cycle 3: LOAD Answer: 3cycles

(c) RRZE 2014 Roofline Model 8

Example: Estimate P,,., of vector triad on SandyBridge [T ='—

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {
A[i] = B[1i] + C[1i] * D[1i];

What is the performance in GFlops/s and the bandwidth in GBytes/s?

One AVX iteration (3 cycles) does 4 x 2 = 8 flops:

3.0-10% cy/s 2 flops Gflops T
v/ - 4 updates - P _ 8 P .

3cy update S]
Homework © i

updates bytes Gbyte 7
4.100 PELES o9 DV _ 195 Y AN _
S update S % A \

(c) RRZE 2014 Roofline Model 9

P..x T+ bandwidth limitations: The vector triad

Example: VectortriadA(:)=B(:)+C(:)*D(:)
on a 3 GHz 8-core Sandy Bridge chip (AVX vectorized)

bs =40 GB/s
B. = (4+1) Words/ 2 Flops = 2.5 W/F (including write allocate)
2> 1=0.4F/W=0.05F/B

=2 [-bg=2.0 GF/s (1.04 % of peak performance)

Ppeak = 192 Gflop/s (8 cores x (4+4) Flops/cy x 3.0 GHz)
Prax = 8 X 8 Gflop/s = 64 Gflop/s (33% peak)

P = min(Py .y, I - bg) = min(64,2.0) GFlop/s
= 2.0 GFlop/s

(c) RRZE 2014 Roofline Model 10

Performance [GFlop/s]

A not so simple Roofline example rrEE

Example: do i=1,N; s=s+a(i); enddo
in single precision on a 2.2 GHz Sandy Bridge socket @ “large” N

P — mln(P I . b) Machine peak
max> S (ADD+MULT)
I I I . . I I I I I Out of reach for this
»sek 282 GFls _ code
T T \ ADD peak N
“r 5] (best possible
P \Y
32F . code)
17.6 GF/s
16 T T T T T T TS How do we
SI— --------- 5.9 GF/s—] \ no SIMD > getthese?
———————————— 2>S t!
A | \ ee nex
5 N 3-cycle latency
per ADD if not
1 -
| | | | | | unrolled Y

]]
l!E‘QYI(ﬁ /8 1/14 12 1 2 4 8 16

Operational Intensity [Flops/Byte]
| =1 flop/ 4 byte (SP!)
P (worst loop code)

(c) RRZE 2014 Roofline Model 11

Applicable peak for the summation loop

Plain scalar code, no SIMD
Pattern!
Pipelining
issues

IOAD rl.0 € O

i €1 ADD pipes utilization:
loop: - :
LOAD r2.0 € a(i) -
ADD r1l.0 € r1.0+r2.0
++i =27? loop g
result € rl.0 S 3
— &
)
%
%

> 1/24 of ADD peak

(c) RRZE 2014 Roofline Model 12

Applicable peak for the summation loop

Scalar code, 3-way unrolling
ILOAD r1.0 € O
LOAD r2.0 € O

ILOAD r3.0 € O _
i €1

loop:
LOAD r4.0 € a(i)
LOAD r5.0 € a(i+l)
LOAD r6.0 € a(i+2)

ADD pipes utilization:

ADD r1.0 € r1.0 + r4.0
ADD r2.0 € r2.0 + r5.0
ADD r3.0 € r3.0 + r6.0

. - 1/8 of ADD peak
i+=3 2? loop P

result € rl.0+r2.0+4+r3.0

(c) RRZE 2014 Roofline Model 13

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled Pattern! ALU
LOAD [rl.0,..,rl.7] € [O,..,0] SHACIENT
LOAD [r2.0,..,xr2.7] € [O0,..,0]
LOAD [r3.0,..,r3.7] € [O0,..,0]
i €1

ADD pipes utilization:

loop:
LOAD [r4.0,..,r4.7] € [a(i),..,a(i+7)]
LOAD [r5.0,..,r5.7] € [a(i+8),..,a(i+15)]
LOAD [r6.0,..,r6.7] € [a(i+l16),..,a(i+23)]

ADD rl € rl + r4
ADD r2 € r2 + r5
ADD r3 € r3 + ré6

i+=24 2? loop - ADD peak
result € rl1l.0+rl.1+4+...4r3.6+4+r3.7

(c) RRZE 2014 Roofline Model 14

Input to the roofline model rrE:

... on the example of do i=1,N; s=s+a(i); enddo
In single precision

Throughput: 1 ADD + 1 LD/cy architecture

Pipeline depth: 3 cy (ADD)
8-way SIMD, 8 cores

/ 59...141GF/s —
Code analysis:
1 ADD + 1 LOAD

\

10GF/s ~—
measurement
analysis :
Maximum memory
bandwidth 40 GB/s

| Worstcode: P =5.9 GF/s (core bound)
Better code: P = 10 GF/s (memory bound)

(c) RRZE 2014 Roofline Model 15

Prerequisites for the Roofline Model

Therooflineformalismis based on some (crucial) assumptions:
There is a clear concept of “work” vs. “traffic”
“‘work” = flops, updates, iterations...
“traffic” = required data to do “work”

Attainable bandwidth of code = input parameter! Determine effective
bandwidth via simple streaming benchmarks to model more complex
kernels and applications

Data transfer and core execution overlap perfectly!
Either the limit is core execution or it is data transfer

Slowest limiting factor “wins”; all others are assumed
to have no impact

Latency effects are ignored, i.e. perfect streaming mode

(c) RRZE 2014 Roofline Model 16

Factorsto considerintheroofline model rrE:

Bandwidth-bound (simple case) Core-bound (may be complex)

Accurate traffic calculation (write- Multiple bottlenecks: LD/ST,
allocate, strided access, ...) arithmetic, pipelines, SIMD,
Practical # theoretical BW limits execution ports
Erratic access patterns Limitis linear in # of cores
I I// I I/’
6™ /_/_/____ ter /_/_/____
81— — 81 —

Perfoarmance [GE/s]
Performance [GF/s]

0.5

0.25

— 025

| | | | | | |
/e4 1132 1116 /8 1/4 112 1 2 /o4 1732 U116 1/8 1/4 1/2 L 2

Computational intensity [F/B] Computational intensity [F/B] }

(c) RRZE 2014 Roofline Model 17

Complexities of in-core execution

Multiple bottlenecks:

Decode/retirement
throughput

Port contention
(direct or indirect)

Arithmetic pipeline stalls
(dependencies)

Overall pipeline stalls
(branching)

L1 Dcache bandwidth
(LD/ST throughput)

Scalar vs. SIMD execution
L1 Icache (LD/ST) bandwidth
Alignment issues

(c) RRZE 2014

L1 Icache

P -

[=

h

Control flow

=) Reorder buffer / Register renaming
)
'q%; ;.i—_J Scheduler
o
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
AU || AW | LOAD | LOAD | STORE| | ALU
kDb ADRS | ADRS JMP
DIV I ‘ ‘
h 4
| 1 - Daia flow
L1 Dcache <+P Memory control
—

Roofline Model

Pot. bottleneck

18

Typical code optimizationsin the Roofline Model

Hit the BW bottleneck by good

serial code
(e.g., Perl - Fortran)

Increase intensity to make
better use of BW bottleneck
(e.g., loop blocking [see later])

Increase intensity and go from

memory-bound to core-bound
(e.g., temporal blocking)

Hit the core bottleneck by good

serial code
(e.g., -fno-alias [see later])

Shift P, by accessing
additional hardware features or

using a different

algorithm/implementation
(e.g., scalar - SIMD)

(c) RRZE 2014

&} +
I I
"o

[R—

Performance P | GF/s]

0.5

0.25

;1

1/64 1/32 1/16

178

1/4

172

I

Computational intensity / [F/B]

Roofline Model

20

Shortcomings of the roofline model rr?':

Saturation effects in multicore chips are not explained
Reason: “saturation assumption”
Cache line transfers and core execution do sometimes not overlap perfectly
It is not sufficient to measure single-core STREAM to make it work

Only increased “pressure” on the memory
interface can saturate the bus 10
- need more cores!
In-cache performanceis not correctly
predicted

A(:)=B(:)+C(:)*D(:)

122 (]
= n
T T T

[~
h

The ECM performance model gives more
Insight:

G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring
performance and power properties of modernmulticore chips
via simple machine models. Concurrency and Computation:

Practice and Experience (2013).
DOI:10.1002/cpe.3180 Preprint: arXiv:1208.2908

Memory bandwidth [GB/s]
=
1 | 1
|

,_.

=]
o
l

Lh
[
I

=
T

(c) RRZE 2014 Roofline Model 21

http://dx.doi.org/10.1002/cpe.3180
http://arxiv.org/abs/1208.2908

