
Microbenchmarking for

architectural exploration

Probing of the memory hierarchy

Saturation effects in cache and memory

Typical OpenMP overheads

2

Motivation for Microbenchmarking as a tool

 Isolate small kernels to:

 Separate influences

 Determine specific machine capabilities (light speed)

 Gain experience about software/hardware interaction

 Determine programming model overhead

 …

 Possibilities:

 Readymade benchmark collections (epcc OpenMP, IMB)

 STREAM benchmark for memory bandwidth

 Implement own benchmarks (difficult and error prone)

 likwid-bench tool: Offers collection of benchmarks and framework for

rapid development of assembly code kernels

(c) RRZE 2015 Microbenchmarking

3

Latency and bandwidth in modern computer environments

ns

ms

ms

1 GB/s

(c) RRZE 2015 Microbenchmarking

HPC plays here

Avoiding slow data

paths is the key to

most performance

optimizations!

4

Recap: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Example: Array copy A(:)=C(:)

(c) RRZE 2015 Microbenchmarking

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1)MISS

write

allocate

evict

(delayed)

3 CL

transfers

LD C(2..Ncl)

ST A(2..Ncl)
HIT

CPU registers

Cache

Memory

CL

CL

CLCL

LD C(1)

NTST A(1)
MISS

2 CL

transfers

LD C(2..Ncl)

NTST A(2..Ncl)
HIT

Standard stores Nontemporal (NT)

stores

50%

performance

boost for

COPY

C(:) A(:) C(:) A(:)

5(c) RRZE 2015 Microbenchmarking

The parallel vector triad benchmark

A “swiss army knife” for microbenchmarking

Simple streaming benchmark:

 Report performance for different N

 Choose NITER so that accurate time measurement is possible

 This kernel is limited by data transfer performance for all memory

levels on all current architectures!

double precision, dimension(N) :: A,B,C,D

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

Prevents smarty-pants

compilers from doing

“clever” stuff

6

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz)

(c) RRZE 2015 Microbenchmarking

L1D cache (32k)

L2 cache (256k)

L3 cache (20M)

Memory

4 W / iteration

 128 GB/s

5 W / it.

 18 GB/s

(incl. write

allocate)

Are the

performance

levels

plausible?

What about

multiple cores?

Do the

bandwidths

scale?

Pattern!

Ineffective

instructions

7

A(:)=B(:)+C(:)*D(:) on one Sandy Bridge core (3 GHz):

Observations and further questions

(c) RRZE 2015 Microbenchmarking

2
.6

6
x

 S
IM

D
 i
m

p
a

c
t?

Data far away smaller SIMD impact?

Theoretical limit?

Theoretical limit?

Theoretical limits?

See later for

answers!

8

The throughput-parallel vector triad benchmark

Every core runs its own, independent triad benchmark

 pure hardware probing, no impact from OpenMP overhead

(c) RRZE 2015 Microbenchmarking

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

9

Throughput vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2015 Microbenchmarking

Saturation effect

in memory

Scalable BW in

L1, L2, L3 cache

10(c) RRZE 2015 Microbenchmarking

Bandwidth limitations: Main Memory
Scalability of shared data paths inside a NUMA domain (V-Triad)

1 thread cannot

saturate bandwidth

Saturation with

3 threads

Saturation with

2 threads

Saturation with

4 threads

11

Attainable memory bandwidth: Comparing architectures

Intel Sandy Bridge AMD Interlagos

NVIDIA K20Intel Xeon Phi 5110P

ECC=on ECC=on

2-socket

CPU node

(c) RRZE 2015 Microbenchmarking

Pattern!

Bandwidth

saturation

12(c) RRZE 2015 Microbenchmarking

Bandwidth limitations: Outer-level cache

Scalability of shared data paths in L3 cache

13

likwid-bench
Microbenchmarking application/platform

likwid-bench …

1. is an extensible, flexible benchmarking framework

2. allows rapid development of low level kernels

3. already includes many ready to use threaded benchmark kernels

 Benchmarking runtime cares for:

 Thread management and placement

 Data allocation and NUMA aware initialization

 Timing and result presentation

 likwid-bench focuses on assembly code interface and

therefore keeps out programming model or compiler issues

(c) RRZE 2015 Microbenchmarking

14

likwid-bench Example

 Implement micro benchmark in abstract assembly

 The benchmark file is automatically converted, compiled

and added to the benchmark application

 Benchmark files are located in the ./bench directory

STREAMS 2

TYPE DOUBLE

FLOPS 0

BYTES 16

LOOP 32

movaps FPR1, [STR0 + GPR1 * 8]

movaps FPR2, [STR0 + GPR1 * 8 + 64]

movaps FPR3, [STR0 + GPR1 * 8 + 128]

movaps FPR4, [STR0 + GPR1 * 8 + 192]

movaps [STR1 + GPR1 * 8], FPR1

movaps [STR1 + GPR1 * 8 + 64], FPR2

movaps [STR1 + GPR1 * 8 + 128], FPR3

movaps [STR1 + GPR1 * 8 + 192], FPR4

$ likwid-bench –t clcopy –g 1 –i 1000 –w S0:1MB:2

$ likwid-bench –t load –g 2 –i 100 –w S1:1GB –w S0:1GB-

0:S1,1:S0

(c) RRZE 2015

Data streams

used in

benchmark

Flops performed

and bytes

transferred in one

operation

Iterations performed

in one loop iteration

Microbenchmarking

15

likwid-bench command line syntax

likwid-bench –h

likwid-bench –a list available benchmarks

Required options:

likwid-bench –t copy –g 1 -w S1:1GB

-t <benchmark case>

-g <# thread groups> need equivalent # working groups

-w <thread domain>:<working set size (kB, MB or GB)>

(-i <# iterations> adjust to get reasonable runtime)

Specify number of threads (Default: all processors in thread domain):

likwid-bench –t copy –g 1 -w S1:1GB:2

Specify data placement (Default: in same NUMA domain as threads):

likwid-bench –t copy –g 1 -w S1:1GB:2-0:S0,1:S1

(c) RRZE 2015

Syntax similar to
likwid-pin expression

based syntax

Microbenchmarking

16

Epilogue: Consequences from the saturation pattern

 Clearly distinguish between “saturating” and “scalable” performance

on the chip level

(c) RRZE 2015 Microbenchmarking

saturating

type

scalable

type

17

 There is no clear bottleneck for single-core execution

 Code profile for single thread ≠ code profile for multiple threads

 Single-threaded profiling may be misleading

Epilogue: Consequences from the saturation pattern

(c) RRZE 2015 Microbenchmarking

8 threads

saturating part scalable part

runtime

1 thread

OpenMP performance issues

on multicore

Synchronization (barrier) overhead

19

The OpenMP-parallel vector triad benchmark

OpenMP work sharing in the benchmark loop

(c) RRZE 2015 Microbenchmarking

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END DO

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

Implicit barrier

20

OpenMP vector triad on Sandy Bridge socket (3 GHz)

(c) RRZE 2015 Microbenchmarking

sync

overhead

grows with #

of threads

bandwidth

scalability

across

memory

interfaces

L1 core limit

21(c) RRZE 2015 Microbenchmarking

Welcome to the multi-/many-core era

Synchronization of threads may be expensive!

!$OMP PARALLEL …

…

!$OMP BARRIER

!$OMP DO

…

!$OMP ENDDO

!$OMP END PARALLEL

On x86 systems there is no hardware support for synchronization!

 Next slide: Test OpenMP Barrier performance…

 for different compilers

 and different topologies:

 shared cache

 shared socket

 between sockets

 and different thread counts

 2 threads

 full domain (chip, socket, node)

Threads are synchronized at explicit AND

implicit barriers. These are a main source of

overhead in OpenMP progams.

Determine costs via modified OpenMP

Microbenchmarks testcase (epcc)

22(c) RRZE 2015 Microbenchmarking

Thread synchronization overhead on SandyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898

23(c) RRZE 2015 Microbenchmarking

Thread synchronization overhead on Intel Xeon Phi
Barrier overhead in CPU cycles

SMT1 SMT2 SMT3 SMT4

One core n/a 1597 2825 3557

Full chip 10604 12800 15573 18490

Still the pain may be much larger, as more work can be done in one cycle

on Phi compared to a full Sandy Bridge node

3.75x cores (16 vs 60) on Phi

2x more operations per cycle on Phi

 2 ∙ 3.75 = 7.5x more work done on Xeon Phi per cycle

2.7x more barrier penalty (cycles) on Phi

 One barrier causes 2.7 ∙ 7.5 ≈ 20x more pain .

2 threads on

distinct cores:

1936

24

Conclusions from the microbenchmarks

 Affinity matters!

 Almost all performance properties depend on the position of

 Data

 Threads/processes

 Consequences

 Know where your threads are running

 Know where your data is

 Bandwidth bottlenecks are ubiquitous

 Synchronization overhead may be an issue

 … and also depends on affinity!

 Many-core poses new challenges in terms of synchronization

(c) RRZE 2015 Microbenchmarking

