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Introduction 
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Our background 

 

 

• We are domain scientists 

– Applied mathematicians: invent algorithms… 

– … and HPC engineers: optimize algorithms 
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Compressible Euler equations 

Our domain: CFD 
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Our domain: CFD 

Compressible Euler equations on cartesian meshes 
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Some of our daily problems 

 

• Algorithm A is faster than algorithm B 

– Is it due to the algorithm, or its implementation ? 

– Will it be true with CPUs 2 years from now ? 

 

• Algorithm A runs in 2 minutes on processor 1 

– What about on processor 2 ? 
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Some of our daily problems 

 

• What limits algorithm A performance ? 

– When do I stop optimizing it ? 

– How can I improve it ? 

 

• Can I explain in simple terms why my 
algorithm runs slow/fast ? 
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What is performance modeling ? 

 

For us, it is a tool to: 

1. predict 

2. understand 

3. explain 

algorithm runtime (not FLOPs) 
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Why do we care ? 

 

1. Predict algorithm performance 

 

• WHAT: quantitative performance blueprint 

• WHY: hardware extrapolation  

• WHY: fair comparison between algorithms 
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Why do we care ? 

 

2. Understand algorithm performance 

 

• WHAT: identifying bottlenecks 

• WHY: getting ideas for improvement 
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Why do we care ? 

 

3. Explain algorithm performance 

 

• WHAT: separate concepts from technicalities 

• WHY: HPC expertise is scarce 
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Our goal 

 

 

Apply existing models to gain insight  

 

(not invent new ones) 
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A disgression on models 
 

In physics, a model is 

• A simplified version of reality… 

• …that helps predict/understand it 
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A disgression on models 
 

• There is no good/bad model 

 

• All models are false 

 

• It is all about the match between 
– The model 

– The phenomenon to be studied 
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A fundamental rule 

 

“use the simplest model that predicts and/or 
explains your data” 
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A fundamental rule 

 

“use the simplest model that predicts and/or 
explains your data” (but not simpler) 
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Performance models 
Rooflines and ECM 
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Machine model 

Computational performance models 

Performance model 

Algorithm model 

Performance metric 
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COMPUTE  
UNITS 

Memory 

Machine description 

DATA 

Compute 

registers 
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Memory 

Machine description 

Compute 

IN 

OUT 
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Memory 
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Compute 

IN 

OUT 
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Memory 

Machine description 

Compute 

IN 

OUT 
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Memory 

Machine description 

Compute 

IN 

OUT 
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The simplest model 

 

Count arithmetic operations 
 

 
For (i=0; i < N; ++i) {  

  a[i] = b[i] + c[i] * d[i]; } 

 

T=
2𝑁 #𝑐𝑜𝑟𝑒𝑠

16 𝑓𝑟𝑒𝑞
 

In double precision,  
on a Haswell/Broadwell/Skylake CPU 

Ex. 
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Memory 

Assumptions of this model 

Compute 

IN 

OUT 
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Memory 

Assumptions of this model 

Compute 

IN 

OUT 

1. ALL FLOPS ARE EQUAL 
2. OPTIMAL COMPUTE USE 

∞ 
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The simplest model 

 

• It rarely works 

 

 

• Our experience in compressible CFD: 

– Most of the time, data transfer is the bottleneck 
 

 

For (i=0; i < N; ++i) {  

  a[i] = b[i] + c[i] * d[i]; } 

 

Ex. Predicted  Measured 

17.6 10^9 points/s 400 10^8 points/s 

Intel Core i5 5200U  @2.2GHz 
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Another simple model 

 

Count data transfers 

 

T =
40𝑁

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 

8x(4+1) 
Double precision 4 reads, 1 write 

For (i=0; i < N; ++i) {  

  a[i] = b[i] + c[i] * d[i]; } 

 

Ex. 
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Memory 

Assumptions of this model 

Compute 

IN 

OUT 
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Memory 

Assumptions of this model 

Compute 

IN 

OUT 

𝐌𝐀𝐗 𝐁𝐀𝐍𝐃𝐖𝐈𝐃𝐓𝐇 ∞ 
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Another simple model 

 

• Works better for this example 

 

 

 
 

 

For (i=0; i < N; ++i) {  

  a[i] = b[i] + c[i] * d[i]; } 

 

Ex. Predicted  Measured 

640 10^8 points/s 532 10^8 points/s 

With theoretical bandwidth 

Intel Core i5 5200U  @2.2GHz 
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Towards roofline 

𝑇 ≥  𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒, and 𝑇 ≥  𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  

 

Thus,  𝑇 ≥ max ( 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒  , 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ) 

           always true 
 

34 



Predictive roofline 

𝑇 ≥  𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒, and 𝑇 ≥  𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  

 

Thus,  𝑇 = max ( 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒  , 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ) 

      Predictive roofline 
 
[Williams, Waterman & Patterson 2009] + (many) successors 
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Memory 

Roofline = perfect overlap 

Compute 

IN 

OUT 

…
 

…
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Memory 
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Compute 

IN 

OUT 
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Memory 

Roofline = perfect overlap 

Compute 

IN 

OUT 

…
 

…
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Roofline assumptions 

 

• Perfect overlap between computation and 
memory transfers 

– Need “predictive” memory access patterns 

 

• If  𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 and  𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 estimated with peak 

FLOPs and bandwidth: ideal roofline 
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Better 𝑻𝒄𝒐𝒎𝒑𝒖𝒕𝒆 estimate 

 

• All FLOP are not equal 

– Ex.  𝑜𝑟 ÷ ≈ 101𝑐𝑦𝑐𝑙𝑒𝑠, + 𝑜𝑟 × ≈ 1 𝑐𝑦𝑐𝑙𝑒 

• 1 core process FLOPs in parallel (ILP) 

 
Ex. Intel Haswell 
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Better 𝑻𝒄𝒐𝒎𝒑𝒖𝒕𝒆 estimate 

 

• Map the algorithm graph to the 
microarchitecture and estimate the critical path 

• Leverage existing tools: Intel IACA 

– See for instance [Treibig et. al 2013] 

– Static analysis 

– Gory detail: AFAIK, you need to vectorize by hand for 
Intel IACA to work… 
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Better 𝑻𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 estimate 

 

• Use an effective bandwidth – not peak 

• E.g. the result of a STREAM benchmark 
(memcpy) 
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Better 𝑻𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 estimate 

 

• Take caches into account 

• We use the ECM model  

– [Treibig & Hager 2010] + successors 

– “Roofline + caches” 

– (+ counting memory instructions) 

– Is able to predict multicore scalability  
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Our final model 
 
• We chose to use the ECM model 

– Methodology similar to [Stengel et. al 2015] 

• Not too complicated (YMMV) 

• Main ingredients: 
– Roofline + cache hierarchy + effective bandwidth 

– (+ minor things)  

– Compute time estimated using static analysis to map 
algorithm graph to microarchitecture 
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Application to CFD 
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Starting point 

 

• Baseline algorithm: Lagrange-remap solver 

• Legacy algorithm (Von Neumann & Richtmyer 1950) 

• Robust, used in the industry 

– Hydrocodes, crash simulations,… 
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Lagrangian remap hydrodynamics 
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Lagrangian remap hydrodynamics 

 

 

 

LAGRANGE REMAP 

Input/Output data, kernels 
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Physical access pattern 

IN OUT 

Stencil pattern 

Example: pressure gradient 

N 
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Physical access pattern 

Stencil pattern 

IN OUT 

Example: pressure gradient 

N 
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Memory access pattern 

… … 

N N 
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Memory access pattern 

Predictive access pattern (at compile time): stride 1 

Q. Good fit for ECM ? 

… … 

N N 
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Memory access pattern 

Q. Good fit for ECM ? A. Yes 

Predictive access pattern (at compile time): stride 1 

N N 

… … 
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What we did (1) 

 

• Applied ECM model to all kernels 

– on intrinsics AVX multithreaded version of the code 

• Used Intel IACA to estimate computation 

• Use L1/L2/L3/RAM description to estimate data 
transfers 

• Got predictions for single core and multi-core 

 

 

 

 

 

Phase 1: predict and validate 
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Performance prediction 

Single core mean/median error in [3%, 8%]  
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Performance prediction 

Multicore scalability also predicted  
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Predict and understand 

Hardware extrapolation 
(SandyBridge 2.6GHz to Haswell 2.0GHz) 
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Predict and understand 

Cache blocking influence 
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What we did (2) 

 

• Identify bottlenecks 

 

 

 

 

 

Phase 2: understand and redesign 
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What’s the bottleneck ? 

 

 

 

LAGRANGE REMAP 

Input/Output data, kernels 
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What we did (2) 

 

• Bottleneck 1: lots of kernels 

– WHAT: Data transfers are the bottleneck 

– WHY: Variables live on several grids  (staggered) 

– WHY: Several phases (Lagrange + remaps) 

– Kernel fusion not straightforward 

 

 

 

 

 

Phase 2: understand and redesign 
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What we did (2) 

 

• Bottleneck 2: multimaterial remap is not SIMD 
friendly 

– WHY: geometric remapping = lots of different cases 

 

 

 

 

 

Phase 2: understand and redesign 
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What we did (2) 

 

• Solution: Lagrange-Flux schemes 

• geometric-free reformulation by balance of 
advection fluxes 

– Only one grid, only two kernels 

– Remapping is SIMD friendly 

 

 

 

 

 

Phase 2: understand and redesign 
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Validation 

Lagrange-remap 

Lagrange-flux 
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Multimaterial validation 

Kothe-Rider test case 
Grid 500x500 

67 



Multimaterial validation 
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Lagrangian remap vs Lagrange Flux 

 

 

 

LAGRANGE REMAP 

Input/Output data, kernels 
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Lagrangian remap vs Lagrange Flux 

 

 

 

LAGRANGE FLUX 

Input/Output data, kernels 
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• Lagrange-flux is faster 

– Scalar Lagrange-flux is slower, but more scalable 

– WHY: because it is compute bound 

 

 

 

 

What we did (3) 

Absolute performance in millions of cell updates / seconds 

Phase 3: validate the performance our new scheme 
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Conclusions 

 

Performance modeling: 

 

• makes HPC more quantitative 

 

• is useful for algorithm optimization and design 

– for HPC engineers and applied mathematicians 
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Conclusions 

 

 

 

For our problems, ECM works very well 
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Predict 

Understand 

Improve 

Virtuous cycle 
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Perspectives 

 

• Extension to other machines (e.g. GPUs) 

– Leverage existing work 

 

• Extension to other algorithms 

– CFD on unstructured grids ? 
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