
Performance modeling
for domain scientists

Raphaël PONCET

CMLA, ENS Cachan

with applications to CFD

Ecole thématique Maths-Info-HPC

May 12, 2016 – St Germain au Mont d’Or

1

The team

• Joint work with

– Marie Bechereau (PhD candidate, ENS Cachan)

– Florian De Vuyst (ENS Cachan)

– Thibault Gasc (PhD candidate, MDLS, CEA, ENS Cachan)

– Renaud Motte (CEA DAM)

– Mathieu Peybernes (CEA DEN)

2

Acknowledgements

• Thanks to

– Thomas Guillet & Philippe Thierry (Intel)

– Jean-Michel Ghidaglia & Amine Mrabet (ENS Cachan)

– Daniel Bouche (CEA DAM)

– Guillaume Colin de Verdiere (CEA DAM)

3

Introduction

4

Our background

• We are domain scientists

– Applied mathematicians: invent algorithms…

– … and HPC engineers: optimize algorithms

5

Compressible Euler equations

Our domain: CFD

6

Our domain: CFD

Compressible Euler equations on cartesian meshes

7

Some of our daily problems

• Algorithm A is faster than algorithm B

– Is it due to the algorithm, or its implementation ?

– Will it be true with CPUs 2 years from now ?

• Algorithm A runs in 2 minutes on processor 1

– What about on processor 2 ?

8

Some of our daily problems

• What limits algorithm A performance ?

– When do I stop optimizing it ?

– How can I improve it ?

• Can I explain in simple terms why my
algorithm runs slow/fast ?

9

What is performance modeling ?

For us, it is a tool to:

1. predict

2. understand

3. explain

algorithm runtime (not FLOPs)

10

Why do we care ?

1. Predict algorithm performance

• WHAT: quantitative performance blueprint

• WHY: hardware extrapolation

• WHY: fair comparison between algorithms

11

Why do we care ?

2. Understand algorithm performance

• WHAT: identifying bottlenecks

• WHY: getting ideas for improvement

12

Why do we care ?

3. Explain algorithm performance

• WHAT: separate concepts from technicalities

• WHY: HPC expertise is scarce

13

Our goal

Apply existing models to gain insight

(not invent new ones)

14

A disgression on models

In physics, a model is

• A simplified version of reality…

• …that helps predict/understand it

15

A disgression on models

• There is no good/bad model

• All models are false

• It is all about the match between
– The model

– The phenomenon to be studied

16

A fundamental rule

“use the simplest model that predicts and/or
explains your data”

17

A fundamental rule

“use the simplest model that predicts and/or
explains your data” (but not simpler)

18

Performance models
Rooflines and ECM

19

Machine model

Computational performance models

Performance model

Algorithm model

Performance metric

20

COMPUTE
UNITS

Memory

Machine description

DATA

Compute

registers

21

Memory

Machine description

Compute

IN

OUT

22

Memory

Machine description

Compute

IN

OUT

23

Memory

Machine description

Compute

IN

OUT

24

Memory

Machine description

Compute

IN

OUT

25

The simplest model

Count arithmetic operations

For (i=0; i < N; ++i) {

 a[i] = b[i] + c[i] * d[i]; }

T=
2𝑁 #𝑐𝑜𝑟𝑒𝑠

16 𝑓𝑟𝑒𝑞

In double precision,
on a Haswell/Broadwell/Skylake CPU

Ex.

26

Memory

Assumptions of this model

Compute

IN

OUT

27

Memory

Assumptions of this model

Compute

IN

OUT

1. ALL FLOPS ARE EQUAL
2. OPTIMAL COMPUTE USE

∞

28

The simplest model

• It rarely works

• Our experience in compressible CFD:

– Most of the time, data transfer is the bottleneck

For (i=0; i < N; ++i) {

 a[i] = b[i] + c[i] * d[i]; }

Ex. Predicted Measured

17.6 10^9 points/s 400 10^8 points/s

Intel Core i5 5200U @2.2GHz

29

Another simple model

Count data transfers

T =
40𝑁

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

8x(4+1)
Double precision 4 reads, 1 write

For (i=0; i < N; ++i) {

 a[i] = b[i] + c[i] * d[i]; }

Ex.

30

Memory

Assumptions of this model

Compute

IN

OUT

31

Memory

Assumptions of this model

Compute

IN

OUT

𝐌𝐀𝐗 𝐁𝐀𝐍𝐃𝐖𝐈𝐃𝐓𝐇 ∞

32

Another simple model

• Works better for this example

For (i=0; i < N; ++i) {

 a[i] = b[i] + c[i] * d[i]; }

Ex. Predicted Measured

640 10^8 points/s 532 10^8 points/s

With theoretical bandwidth

Intel Core i5 5200U @2.2GHz

33

Towards roofline

𝑇 ≥ 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒, and 𝑇 ≥ 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Thus, 𝑇 ≥ max (𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 , 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)

 always true

34

Predictive roofline

𝑇 ≥ 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒, and 𝑇 ≥ 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Thus, 𝑇 = max (𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 , 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)

 Predictive roofline

[Williams, Waterman & Patterson 2009] + (many) successors

35

Memory

Roofline = perfect overlap

Compute

IN

OUT

…

…

36

Memory

Roofline = perfect overlap

Compute

IN

OUT

…

…

37

Memory

Roofline = perfect overlap

Compute

IN

OUT

…

…

38

Memory

Roofline = perfect overlap

Compute

IN

OUT

…

…

39

Memory

Roofline = perfect overlap

Compute

IN

OUT

…

…

40

Roofline assumptions

• Perfect overlap between computation and
memory transfers

– Need “predictive” memory access patterns

• If 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 and 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 estimated with peak

FLOPs and bandwidth: ideal roofline

41

Better 𝑻𝒄𝒐𝒎𝒑𝒖𝒕𝒆 estimate

• All FLOP are not equal

– Ex. 𝑜𝑟 ÷ ≈ 101𝑐𝑦𝑐𝑙𝑒𝑠, + 𝑜𝑟 × ≈ 1 𝑐𝑦𝑐𝑙𝑒

• 1 core process FLOPs in parallel (ILP)

Ex. Intel Haswell

42

Better 𝑻𝒄𝒐𝒎𝒑𝒖𝒕𝒆 estimate

• Map the algorithm graph to the
microarchitecture and estimate the critical path

• Leverage existing tools: Intel IACA

– See for instance [Treibig et. al 2013]

– Static analysis

– Gory detail: AFAIK, you need to vectorize by hand for
Intel IACA to work…

43

Better 𝑻𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 estimate

• Use an effective bandwidth – not peak

• E.g. the result of a STREAM benchmark
(memcpy)

44

Better 𝑻𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 estimate

• Take caches into account

• We use the ECM model

– [Treibig & Hager 2010] + successors

– “Roofline + caches”

– (+ counting memory instructions)

– Is able to predict multicore scalability

45

Our final model

• We chose to use the ECM model

– Methodology similar to [Stengel et. al 2015]

• Not too complicated (YMMV)

• Main ingredients:
– Roofline + cache hierarchy + effective bandwidth

– (+ minor things)

– Compute time estimated using static analysis to map
algorithm graph to microarchitecture

46

Application to CFD

47

Starting point

• Baseline algorithm: Lagrange-remap solver

• Legacy algorithm (Von Neumann & Richtmyer 1950)

• Robust, used in the industry

– Hydrocodes, crash simulations,…

48

Lagrangian remap hydrodynamics

49

Lagrangian remap hydrodynamics

LAGRANGE REMAP

Input/Output data, kernels
50

Physical access pattern

IN OUT

Stencil pattern

Example: pressure gradient

N

51

Physical access pattern

Stencil pattern

IN OUT

Example: pressure gradient

N

52

Memory access pattern

… …

N N

53

Memory access pattern

Predictive access pattern (at compile time): stride 1

Q. Good fit for ECM ?

… …

N N

54

Memory access pattern

Q. Good fit for ECM ? A. Yes

Predictive access pattern (at compile time): stride 1

N N

… …

55

What we did (1)

• Applied ECM model to all kernels

– on intrinsics AVX multithreaded version of the code

• Used Intel IACA to estimate computation

• Use L1/L2/L3/RAM description to estimate data
transfers

• Got predictions for single core and multi-core

Phase 1: predict and validate

56

Performance prediction

Single core mean/median error in [3%, 8%]

57

Performance prediction

Multicore scalability also predicted

58

Predict and understand

Hardware extrapolation
(SandyBridge 2.6GHz to Haswell 2.0GHz)

59

Predict and understand

Cache blocking influence

60

What we did (2)

• Identify bottlenecks

Phase 2: understand and redesign

61

What’s the bottleneck ?

LAGRANGE REMAP

Input/Output data, kernels
62

What we did (2)

• Bottleneck 1: lots of kernels

– WHAT: Data transfers are the bottleneck

– WHY: Variables live on several grids (staggered)

– WHY: Several phases (Lagrange + remaps)

– Kernel fusion not straightforward

Phase 2: understand and redesign

63

What we did (2)

• Bottleneck 2: multimaterial remap is not SIMD
friendly

– WHY: geometric remapping = lots of different cases

Phase 2: understand and redesign

64

What we did (2)

• Solution: Lagrange-Flux schemes

• geometric-free reformulation by balance of
advection fluxes

– Only one grid, only two kernels

– Remapping is SIMD friendly

Phase 2: understand and redesign

65

Validation

Lagrange-remap

Lagrange-flux

66

Multimaterial validation

Kothe-Rider test case
Grid 500x500

67

Multimaterial validation

68

Lagrangian remap vs Lagrange Flux

LAGRANGE REMAP

Input/Output data, kernels
69

Lagrangian remap vs Lagrange Flux

LAGRANGE FLUX

Input/Output data, kernels
70

• Lagrange-flux is faster

– Scalar Lagrange-flux is slower, but more scalable

– WHY: because it is compute bound

What we did (3)

Absolute performance in millions of cell updates / seconds

Phase 3: validate the performance our new scheme

71

Conclusions

Performance modeling:

• makes HPC more quantitative

• is useful for algorithm optimization and design

– for HPC engineers and applied mathematicians

72

Conclusions

For our problems, ECM works very well

73

Predict

Understand

Improve

Virtuous cycle

74

Perspectives

• Extension to other machines (e.g. GPUs)

– Leverage existing work

• Extension to other algorithms

– CFD on unstructured grids ?

 75

References

• S. Williams, A. Waterman, and D. Patterson. "Roofline: an insightful visual performance
model for multicore architectures." Communications of the ACM 52.4 (2009): 65-76.

• J. Treibig and G. Hager: Introducing a Performance Model for Bandwidth-Limited Loop
Kernels. Proceedings of the Workshop “Memory issues on Multi- and Manycore Platforms”
at PPAM 2009, the 8th International Conference on Parallel Processing and Applied
Mathematics, Wroclaw, Poland, September 13-16, 2009. Lecture Notes in Computer
Science Volume 6067, 2010, pp 615-624. DOI: 10.1007/978-3-642-14390-8_64.
arXiv:0905.0792

• J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein: Pushing the limits for
medical image reconstruction on recent standard multicore processors. International
Journal of High Performance Computing Applications 27(2), 162–177

• H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of
stencil computations using the Execution-Cache-Memory model. Proc. ICS15, the 29th
International Conference on Supercomputing, June 8-11, 2015, Newport Beach, CA. DOI:
10.1145/2751205.2751240. Preprint: arXiv:1410.5010

76

http://www.ppam.pl/
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://arxiv.org/abs/0905.0792
http://www.cs.ucr.edu/~ics15/
http://dx.doi.org/10.1145/2751205.2751240
http://dx.doi.org/10.1145/2751205.2751240
http://arxiv.org/abs/1410.5010

References

• T. Gasc, F. De Vuyst, M. Peybernes, R. Poncet, R. Motte, Building a more efficient Lagrange-
remap scheme thanks to performance modeling, ECCOMAS 2016, Paper P12210, Proc. of
the Conference ECCOMAS 2016, Minisymposium “MS 414 - New trends in numerical
methods for multi-material compressible fluid flows”, accepted (2016)

• F. De Vuyst, T. Gasc, R. Motte, M. Peybernes, R. Poncet, Lagrange-Flux Eulerian schemes
for compressible multimaterial flows, ECCOMAS 2016, Paper E8851, Proc. of the
Conference ECCOMAS 2016, Minisymposium “MS 414 - New trends in numerical methods
for multi-material compressible fluid flows”, accepted (2016)

• F. De Vuyst, M. Béchereau, T. Gasc, R. Motte, M. Peybernes, R. Poncet, Stable and accurate
low-diffusive interface capturing advection schemes, submitted to IJNMF, Special issue for
the MULTIMAT 2015 Conf., accepted (2016)

• R. Poncet, M. Peybernes, T. Gasc and F. De Vuyst, Performance modeling of a compressible
hydrodynamics solver on multicore CPUs, Proc. of the PARCO 2015 Conference, Edinburgh,
to appear (2016)

 77

Thank you

78

