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Sketch of the talk

Introduction
Recall some definitions

One of the oldest PDE and it’s numerical solution
Reduce to ODEs using finite differences
Solving ODEs
Finite elements.
Finite volumes

Linear Algebra



We solve Partial Differential Equation (and Ordinary
Differential Equations, too).

Focus on simple problems.

I Simple problems from the mathematical point of view (theory and
numerical analysis is about 50 years old).

I But not so simple if we want to obtain interesting performances.

I Most part of numerical methods have been invented at a time where
machine architecture did not matter.

– Computers at the begining of my career–
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Let us recall some definitions

Ω an open, bounded,... domain in Rn.
~x = (x1, . . . , xn) ∈ Ω.
u(~x) : Ω 7→ R.

Ω

dΩ n

Definition (Gradient)

~grad u = (. . . ,
∂u

∂xi
, . . .)t ∈ Rn.

vi(~x), i = 1, . . . , n.

Definition (Divergence)

div v =

n∑
i=1

∂vi
∂xi

∈ R.
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Definition (Laplacian operator)

∆u =

n∑
i=1

∂2u

∂x2
i

∈ R.

Property

Let u(~x) Ω 7→ R; then

∆u = div ~gradu.



Green Formula

Theorem (Green Formula)

Consider ~u(~x) = (u1(~x), . . . , un(~x))t and v(~x). Then:∫
Ω

div ~u.v dx1 . . . dxn +

∫
Ω

~u. ~grad v dx1 . . . dxn =

∫
∂Ω

(~u.~n).vds.

Property (in dimension n = 1)

In dimension 1, Green formula is nothing but the integration by part
formula!
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The Heat equation (Joseph Fourier, 1822)

Let u(~x, t) be the density at x ∈ Ω and
at time t of something which diffuses in Ω
(heat, chemical product,...).

To simplify, set n = 1 so that Ω ⊂ R. Joseph Fourier
1768–1830.

The idea is: on any interval [x, x+ h] the amount of u is only modified
by a flux at the boundary of the interval:

d

dt

∫ x+h

x

u(s, t) ds = φ(x, t)− φ(x+ h, t).
Φ (x,t)

x x+h

Φ (x+h,t)

But using the integration by part formula, we get:

d

dt

∫ x+h

x

u(s, t) = −
∫ x+h

x

∂φ

∂x
(s, t)ds.
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So that we have a conservation law:

∂u

∂t
(x, t) +

∂φ

∂x
(x, t) = 0.

We must close this equation. For this, the Fourier law is:

φ(x, t) = −k∂u
∂x

(x, t).

So that we get the:

Heat equation (n = 1)

∂u

∂t
(x, t)− k∂

2u

∂x2
(x, t) = 0.
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The Heat equation

If n > 1, consider a domain ω around any
point x ∈ Ω. Then the Fourier law is:

~φ(~x) = −k ~gradu(~x).

Repeat the same computation as for d = 1
using Green formula, to get:

Heat equation

∂u

∂t
(~x, t)− k ∆u(~x, t) = 0.

n

φ .n

x

ω

Ω



Remarks

1. If there is some surface heating we get:

∂u

∂t
(~x, t)− k ∆u(~x, t) = f(x, t).

2. The equation must be equipped with initial values u(x, 0) = u0(x)
and boundary conditions, that is:

2.1 Neuman conditions: ~gradu.~n = 0 on ∂Ω. Then, the integral of u on
Ω is constant.

2.2 Dirichlet condition: u = g on ∂Ω.
2.3 Robin conditions: ~grad u.~n = c.(u− g).

3. Changing the flux φ can change completely the nature of the
problem, both mathematically and numerically! Examples:
φ(x, t) = u(x, t) or something non linear φ(x, t) = f(u(x, t)).
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Numerical solution

Replace u(x, t) by a finite dimensional approximation U(t) and Laplace
operator ∆ by a linear finite dimensional operator (matrix) so that the
problems becomes:

dU

dt
= AU.

which is a (large) system of linear ordinary differential equations.
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Remarks
I this new problem is mathematically trivial, if you know the eigen

values,vectors of A. This is not the case, except on parallelograms:
Fourier introduced his series for this case.

I So, we must use a numerical method to solve the system of ODEs
and we have to define 2 methods:

1. How to reduce the heat equation to a system of ODEs?
2. How to solve this system.

I We will look also at the stationary problem:

Poisson equation

∆u(~x) = f,

+ boundary conditions.



Remarks
I this new problem is mathematically trivial, if you know the eigen

values,vectors of A. This is not the case, except on parallelograms:
Fourier introduced his series for this case.

I So, we must use a numerical method to solve the system of ODEs
and we have to define 2 methods:

1. How to reduce the heat equation to a system of ODEs?
2. How to solve this system.

I We will look also at the stationary problem:

Poisson equation

∆u(~x) = f,

+ boundary conditions.



Remarks
I this new problem is mathematically trivial, if you know the eigen

values,vectors of A. This is not the case, except on parallelograms:
Fourier introduced his series for this case.

I So, we must use a numerical method to solve the system of ODEs
and we have to define 2 methods:

1. How to reduce the heat equation to a system of ODEs?
2. How to solve this system.

I We will look also at the stationary problem:

Poisson equation

∆u(~x) = f,

+ boundary conditions.



Spatial discretization (reducing to a system of ODEs).
1: finite differences

Uij
J J

I

h

h

∂u

∂x
(xi, yj) '

ui+1,j − uij
h

.

∂2u

∂x2
(xi, yj) '

ui+1,j−uij

h − uij−ui−1,j

h

h

∂2u

∂x2
(xi, yj) '

ui+1,j − 2 uij + ui−1,j

h2
.

∆u(xi, xj) '
ui+1,j + ui,j+1 − 2 uij + ui−1,j + ui,j−1

h2
. (1)

Then, choose an order of the points on the grid and store all uij in a
vector U , using this order.Equation (1) defines a matrix A. The Heat
equation is approached by:

dU

dt
= AU,

(plus initial condition).
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Properties of the finite difference matrix

I A is sparse. Only 3, 5 or 7 (if dimension=1, 2, 3) terms 6= 0 (by line).

I We do not need to store A to apply it to a vector (y = Ax).
I A is symmetric. Moreover, with Dirichlet or Robin boundary

conditions, A is positive definite.
I Condition number: κ = ||A||.||A−1||.

When solving AX = B, the relative errors are given by:

‖δX‖
‖X‖

≤ κ(A)

1− κ(A)‖δA‖/‖A‖

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
.

Using the Euclidean norm, as A is symmetric, we have

κ(A) = |λ|max/|λ|min.

If Ω is a {segment, square, cube}, computing the eigenvalues is
easy; then one find:

κ(A) = O(h−2).
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I Bad news:
I say good bye to float and use double.
I the system dU/dt = Au is stiff.

I Good news:
I κ(A) = O(h−2) independently of the dimension n (and of the

discretization).



Time discretization

How to solve dU/dt = Au?

A is diagonalizable and has eigenvalues λ ∈ [−1/h2,−ε].

So the solution is a combination of exp(−λkt)Uk.

Classical explicit methods cannot be used.

Example: explicit Euler method applied to du/dt = −λu (with λ > 0).

un+1 − un
δt

= −λun.

=> un+1 = (1− δt λ) un => un is bounded only if δt < 1/|λ|.

Do not use explicit methods

For du/dt = Au, one must choose δt < 1/|λ|max.
That is to say, the smallest time scales of the problem must be integrated.

For the Heat equation, this means δt < h2! The Heat equation is stiff.
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Implicit methods

Example: implicit Euler method applied to du/dt = −λu (with λ > 0).

un+1 − un
δt

= −λun+1.

=> un+1 = un/(1 + δt λ) and un are bounded.

Definition (A-stability)

A method is said to be A-stable when, applied to dy/dt = λy, the
sequence (un)n is bounded for any λ ∈ C such that <(λ) < 0.

Properties:

I all A-stable methods are implicit.

I the time step is only bounded by precision considerations, and we do
not need to integrate the fastest time scales.
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Order, A-stable methods

Definition (order of an ODE solver)

Consider dy/dt = f(y) starting from y0 at time t = 0.
Apply the solver with a time step δt => y1 and compare y1 and the
exact solution y(δt).

Method is of order p iff the first p coefficients of the Taylor expansions of
y1 and y(δt) as functions of δt are equal.

Examples of A-stable methods:

I The Crank-Nicolson method:

(un+1 − un)/δt = (f(un+1 + f(un))/2.

Order 2; extremely popular, but has some instabilities (not L-stable,
see literature).

I The backward-differentiation formulas (Gear methods).

I Some well designed (diagonally) implicit Runge-Kutta methods.
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At each time step, we need solve some linear systems

(A+ αδt I)U = B.

For the Poisson equation: solve

AU = B.

We will go back to these linear systems later.
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Finite elements. 1) Weak form.

An other spatial discretization.

Discretize the weak form of the equation:

I ∆u = f.

I multiply by v, integrate on Ω:∫
Ω

div ~gradu(x).v(x) dx =

∫
Ω

f(x)v(x)dx.

I Use the Green formula, to obtain the

Weak form:

Find u such that for any v:∫
Ω

~gradu(x). ~grad v(x) dx =

∫
Ω

f(x)v(x)dx

+ some boundary terms which are null with homogeneous bc.
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Finite elements. 1) Galerkin method

I Start from the weak form of ∆u = f :∫
Ω

~gradu(x). ~grad v(x) dx =

∫
Ω

f(x)v(x)dx.

I Take a finite dimensional space

H = span{φ1(x), . . . , φk(x), . . . , φm(x)}.

I and approach u by
∑m

i=1 Uiφi(x) and choose v ∈ H.

I That is to say find U = (U1, . . . , Uk, . . . , Um)t such that:

∀i ∈ 1,m :

∫
Ω

(

m∑
i=1

Uj
~gradφj). ~gradφidx =

∫
Ω

fφidx.

I This is a symmetric linear system AU = F with:

Ai,j =

∫
Ω

~gradφi. ~gradφjdx and Fi =

∫
Ω

fφidx.



Finite elements. 1) Galerkin method

I Start from the weak form of ∆u = f :∫
Ω

~gradu(x). ~grad v(x) dx =

∫
Ω

f(x)v(x)dx.

I Take a finite dimensional space

H = span{φ1(x), . . . , φk(x), . . . , φm(x)}.

I and approach u by
∑m

i=1 Uiφi(x) and choose v ∈ H.

I That is to say find U = (U1, . . . , Uk, . . . , Um)t such that:

∀i ∈ 1,m :

∫
Ω

(

m∑
i=1

Uj
~gradφj). ~gradφidx =

∫
Ω

fφidx.

I This is a symmetric linear system AU = F with:

Ai,j =

∫
Ω

~gradφi. ~gradφjdx and Fi =

∫
Ω

fφidx.



Finite elements. 1) Galerkin method

I Start from the weak form of ∆u = f :∫
Ω

~gradu(x). ~grad v(x) dx =

∫
Ω

f(x)v(x)dx.

I Take a finite dimensional space

H = span{φ1(x), . . . , φk(x), . . . , φm(x)}.

I and approach u by
∑m

i=1 Uiφi(x) and choose v ∈ H.

I That is to say find U = (U1, . . . , Uk, . . . , Um)t such that:

∀i ∈ 1,m :

∫
Ω

(

m∑
i=1

Uj
~gradφj). ~gradφidx =

∫
Ω

fφidx.

I This is a symmetric linear system AU = F with:

Ai,j =

∫
Ω

~gradφi. ~gradφjdx and Fi =

∫
Ω

fφidx.



Finite elements

Idea: use the Galerkin method and choose H = span{φ1(x), . . . , φm(x)}
such that:

1. The matrix A is sparse.
2. The coefficients Ai,j and Fi are easy to compute.
3. The method is adapted to complex geometries.

The simplest case degree 1 in dimension 1

φ
i

φ
i+1

an element

x
i

x
i+1

I elements have variable sizes

I functions φ verify φi(xj) = δij .

I functions φ are polynomial on
each element (here degree = 1).

I functions φ are continuous.

x x
i i+1

Element

Elements of degree 2 in dimension 1.
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Finite elements. Dimension 2 and more

Dimension 2, and the simplest case: degree 1 in triangles.

S

S

S
k

l

m

an element

φk(sl) = δkl

S
k

Support of φk.

Degree 2 in dimension 2.
Dimension 3.
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Finite elements: why are they so popular?

I The FEM is well adapted to Navier equations (elasticity, solids).

(λ+ µ) ~grad div ~u(~x) + µ∆~u(~x) + ~f = 0.

=> the first large industrial computing codes (Nastran).

I The weak form is the correct mathematical framework to study
these sorts of PDEs.

I => Very well established mathematical analysis (error bounds,
convergence).

I Interesting programming problems.

I Huge codes (some 106 lines, often in fortran).

I Nice programs available (Freefem).

The mathematical analysis of FE is used for the analysis of many other
numerical methods.

Cherchez la FEM (G. Strang and G.J. Fix,in the
first book analyzing the FEM (1973)).
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Finite volumes: back to the origin.

Recall that the Heat equation can be written:

du

dt
(~x, t) + div ~φ(~x, t) = 0

with (omitting coefficient k):

~φ(~x, t) = − ~gradu(~x, t).

n

φ .n

On any volume ω ⊂ Ω we have:

d
∫
ω
ud~x

dt
=

∫
∂ω

~φ(s, t).~n ds.

In dimension 1, this is:

d

dt

∫ x+h

x

u(s, t) ds = φ(x, t)−φ(x+h, t).

i+1 i+2i−1 i

Volume
Constant valuefluxes



Finite volumes: back to the origin.

Recall that the Heat equation can be written:

du

dt
(~x, t) + div ~φ(~x, t) = 0

with (omitting coefficient k):

~φ(~x, t) = − ~gradu(~x, t).

n

φ .n

On any volume ω ⊂ Ω we have:

d
∫
ω
ud~x

dt
=

∫
∂ω

~φ(s, t).~n ds.

In dimension 1, this is:

d

dt

∫ x+h

x

u(s, t) ds = φ(x, t)−φ(x+h, t).

i+1 i+2i−1 i

Volume
Constant valuefluxes



Finite volumes: back to the origin.

Recall that the Heat equation can be written:

du

dt
(~x, t) + div ~φ(~x, t) = 0

with (omitting coefficient k):

~φ(~x, t) = − ~gradu(~x, t).

n

φ .n

On any volume ω ⊂ Ω we have:

d
∫
ω
ud~x

dt
=

∫
∂ω

~φ(s, t).~n ds.

In dimension 1, this is:

d

dt

∫ x+h

x

u(s, t) ds = φ(x, t)−φ(x+h, t).

i+1 i+2i−1 i

Volume
Constant valuefluxes



Finite volumes

Define the fluxes by interpolation.
Most simple case:

φ(xi+1/2) =
vi+1 − vi

h
.

Different order.

X

X

Xi

i+1/2

i+1

Can be generalized in dimension 2 and 3 to more sophisticated volumes
(triangles...).

The idea is interesting: all the art is in the definition of the fluxes; for
example, for first order problems:
∂u/∂t = ∂u/∂x or ∂u/∂t = ∂f(u)/∂x
this is a difficult task.
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Linear systems, with sparse matrices; iterative methods

Krylov methods:

Kn = {B,AB,A2B, . . . , AnB}.

All methods involve:

I matrix × vector products.

I linear combinations.

I dot products.

Most popular: Conjugate Gradient (symmetric systems), GMRES,
BICGSTAB, MINRES..
With Conjugate Gradient, no need to store Kn.



Linear systems, with sparse matrices and iterative methods:
preconditioning

Idea: the convergence of iterative methods depends of the condition
number of the matrix.
For the conjugate gradient:

||uk − u∗|| = 2(

√
κ(A)− 1√
κ(A) + 1

)k||u0 − u∗||.

Preconditioning

Find a matrix P such that κ(PA) << κ(A).

A lot of methods have been studied!
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Linear systems, with sparse matrices and iterative methods:
preconditioning

Most common idea: incomplete factorization.

I Observe that the best preconditioner would be U−1.L−1 where
L.U = A is the LU factorization of A. This is not a good idea!

I Observe that, in the LU factorization of A, many non zero terms are
created.

I The idea is to use the LU factorization algorithm, but to compute
only some well chosen terms (at least those corresponding to (i, j)
where Aij 6= 0). This needs some art (and science).

I if A is symmetric, you can replace LU by Cholesky.

I Good: relatively efficient methods. Existing libraries.

I Not so good:
I never a universal method.
I not very parallel!
I low arithmetic intensity.
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Linear systems, with sparse matrices and iterative methods:
preconditioning

An other idea: Chebyshev preconditioning. This is an old idea!

Consider the sequence:

uk − uk−1

τk
= Auk − F.

where the τk are chosen so that the sequence converges.

If you know an interval which contains [λmin, λmax] (the eigenvalues of
A), you can build an optimal sequence of {τk}k. The {τk}k are function
of the roots of the kth Chebyshev polynomial.

Compute the k first steps: uk is an approximation of the inverse of A.
You can use it as preconditionner.

I Good: simple and parallel!
I Not so good:

I difficult to adapt to non symmetric problems.
I not as fast as incomplete preconditioning in terms of speed of

convergence.
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I Not so good:

I difficult to adapt to non symmetric problems.
I not as fast as incomplete preconditioning in terms of speed of
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Linear systems, sparse matrices and iterative methods:
preconditioning: let us be a bit more concrete

An experience on my Sandy-Bridge machine (16 core):

Take the 7 points stencil of the Laplace operator in dimension 3 and
store the matrix in CSR format. How fast is a matrix × vector product?

(double: 64 bits, int: 32, OpenMP).

I Algorithm Bdwth: 37/2 double; Flops: 13 => Ia ' 0.7
flops/double.

I Machine Bdwth: 8.73 Giga doubles/s (measured with Stream).

=> Attainable = 0.7× 8.73 = 6.11 Gflops.

Measured: 6.42 Gflops.

But CSR is the sort of data structure you need to use with non
Cartesian meshes and incomplete factorization preconditioning
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Linear systems, sparse matrices and iterative methods:
preconditioning: let us be a bit more concrete

Cartesian meshes (finite differences, finite volumes or finite
elements on Cartesian meshes.)

Actually, A is made of blocks, all equals (=> stencils).

No need to store the matrix (so, no CSR format) if we perform only
matrix × vector products.

I We cannot use incomplete factorization preconditioning if we refuse
to use the CSR format.

I But we can use Chebyshev preconditioning.

See the results of Wim Vanroose using Pluto + Chebyshev
preconditioning on finite differences discretization.
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Trends

I High order methods (high order is order > 2 :-) ).

I Accept to loose some optimality to be more respectful of the
“Physics” (Conserve energy if the system is conservative, positivity
is the solution is positive, waves...).

I Take account of multiscale character of the problems.

I Compute in dimension ≥ 3 (for Boltzman equations and related
problems, it would be good to compute in dimension 6!).

I Data assimilation.

I ...
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