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WHAT IS PLUTO?

@ A source-to-source optimizer and parallelizer

@ Uses many other polyhedral libraries and tools like ISL,
Polylib, Cloog, Pet, Clan, Candl



HOW CAN PLUTO BE USED?

@ Push button: fully automatically for optimization (tiling
and other transformations), parallelization

@ Almost automatic: With an understanding of what Pluto
does, use it to obtain desired result

@ DSLs: In domain-specific compilers/optimizers or library
generators
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The Evolutionary Approach The Revolutionary Approach
@ Improve existing @ Build new domain-specific
general-purpose compilers languages and compilers
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Important to pursue both
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@ Examples of affine functions of i, j: i +j,i1—j,i+1,2i+5
e Not affine: ij, i?, i + /2, a[j]



AFFINE TRANSFORMATIONS

e Examples of affine functions of ,j: i +j,i—j,i+1,2i+5
o Not affine: ij, i2, i + 2, alj]
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Figure: Iteration space Figure: Transformed space

for (i =0; 1 < N; i++){
for (j =0; j <M; j++){
A[i+1][j+1]1 = f(A[i]1[j])

#pragma omp parallel for private(t2)
for (tl=-M+1; tl<=N-1; tl++) {
for (t2=max(0,-tl); t2<=min(M-1,N-1-t1); t2++){
A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);
¥ }
}

e Transformation: (i,7) — (i —j,j)



AFFINE TRANSFORMATIONS
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@ Affine transformations are attractive because:

e Preserve collinearity of points and ratio of distances
between points

e Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)
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@ Affine transformations are attractive because:

e Preserve collinearity of points and ratio of distances
between points

e Code generation with affine transformations has thus been
studied well (CLooG, ISL, OMEGA+)

e Model a very rich class of loop re-orderings

e Useful for several domains like dense linear algebra,
stencils, image processing pipelines, Lattice Boltzmann
Method



AFFINE TRANSFORMATIONS
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e Affine transformations can improve parallelism and
locality (Feautrier 1992, Lengauer, Lim and Lam 1997,
Griebl 2004, Pluto 2008)



THE PLUTO ALGORITHM

@ Designed around 2008 [Bondhugula et al. CC 2008, PLDI
2008]

e Finds good transformations to improves locality and
parallelism

@ Extended in 2014-2015 (transformation coefficients need
not be non-negative)
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FINDING VALID AND GOOD AFFINE
TRANSFORMATIONS

(i, )
(1)
i+, j)
(i, )
(i, i+j)
(i+j, i)

@ One-to-one functions
e Validity: dependences should not be violated

e Coefficients: for i — j, the coefficients are 1,-1



@ Optimization Problem: Minimize dependence distance
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@ Partition and execute iteration space in
blocks

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,3)
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TILING (BLOCKING)

@ Partition and execute iteration space in
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TILING (BLOCKING)

@ Partition and execute iteration space in
blocks

@ Benefits - cache locality & parallelism

@ Validity of tiling
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TILING (BLOCKING)

@ Partition and execute iteration space in
blocks

@ Benefits - cache locality & parallelism

@ Validity of tiling
@ No cycle between tiles
o Sufficient condition: All

dependence components should be
non-negative

for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,])
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Figure: Iteration space
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TILING (BLOCKING)

@ Partition and execute iteration space in
blocks for (i=1; i<T; i++)

for (j=1; j<N-1; j++)

@ Benefits - cache locality & parallelism st)
@ Validity of tiling

@ No cycle between tiles

o Sufficient condition: All 2

dependence components should be :

non-negative

@ Time tiling

0—>0—>0—>0—>0

o 1 2 3 ----N2 0 1 2 3 ....N2

Figure: mvalid tiling Figure: valid tiling



CONCURRENT START AND DIAMOND TILING!

Figure: Parallelogram tiling
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CONCURRENT START AND DIAMOND TILING!
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CONCURRENT START AND DIAMOND TILING!
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CONCURRENT START AND DIAMOND TILING!
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Figure: Pipelined start Figure: Concurrent start possible




CONCURRENT START AND DIAMOND TILING!
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Figure: Pipelined start Figure: Concurrent start possible

@ Diamond tiling
@ Face allowing concurrent should be strictly within the cone of the
tiling hyperplanes
e Eg: (1,0) is in the cone of (1,1) and (1,-1)



CLASSICAL TIME SKEWING VS DIAMOND TILING

= inter-tile dependence = inter-tile dependence

Figure: Two ways of tiling heat-1d: parallelogram & diamond

@ Classical time skewing: (¢,i) — (¢, + 1)
e Diamond tiling: (¢,i) — (t +1i,t — i)



A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI
RELAXATIONS

for (t = 0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][11[]] = fO(A[t%2][i+1][j], A[t%2][i][j], Alt%2][i-1][j],
A[t%2] [1]1[j+1], A[t%2][i][j-1], A[t%2][i][j]);

@ Enabling transformation for diamond tiling

T((t, 17])) = (t+it— i7t+j)‘
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A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI
RELAXATIONS

for (t =0; t <T; t++)
for (i = 1; i < N+1; i++)
for (j = 1; j < N+1; j++)
A[(t+1)%2][11[]] = fO(A[t%2][i+1][j], A[t%2][i][j], Alt%2][i-1][j],
A[t%2] [1]1[j+1], A[t%2][i][j-1], A[t%2][i][j]);

@ Enabling transformation for diamond tiling

T((t, 17])) = (t+it— i’t+j)‘

@ Perform the actual tiling (in the transformed space)

t+i t—i t+j
T'((1i,f) = < L 6+4],t+i,t—i,t+j>

@ Create a wavefront of tiles

) i i t—it4j .
T"((t = tt+it
i) = (o g el ria)




@ Optimize Jacobi and other relaxations via time tiling
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SOME EXAMPLES OF HOW PLUTO CAN BE USED

@ Optimize Jacobi and other relaxations via time tiling

@ Optimize pre-smoothing steps at various levels of
Geometric Multigrid method

@ Optimize Lattice Boltzmann Method computations



USING PLUTO: RECOMMENDATIONS

Web: http://pluto-compiler.sf.net

@ Use git version
@ Use 'pet’ branch of git version

@ Preferable: use Intel’s C/C++ compiler (14.0 or higher) to
compile generated code



OUTLINE

© Case Studies
@ Solving Partial Differential Equations

@ Lattice Boltzmann Method
@ Image Processing Pipelines



POISSON’S EQUATION

Poisson’s equation:

Veu =f.
1 -1
-1

@ We are solving y = Ax
e What about A~1?



GEOMETRIC MULTIGRID METHOD

@ Use a hierarchical structure — a multi-scale representation
of the grid

@ Perform pre-smoothing at a finer level
@ Restrict the error to a coarser grid
@ Solve for the error at a coarser level (recursion)

@ Interpolate the error to the finer level

@ Run multiple iterations of the above

Pluto can be used to optimize the pre-smoothing or
post-smoothing steps readily



HIERARCHICAL MESH STRUCTURE

Figure: Hierarchical mesh structure for Multigrid levels



MULITIGRID V-CYCLE: ALGORITHM

A G e W N

N

10
11

Input : o, f"

Relax ¢" for n; iterations: v/ < (1 — wD~'AM" + wD~1f"
// pre-smoothing

if coarsest level then

‘ Relax ¢" for n, iterations // coarse smoothing
e i — Ahoh // residual
r2h Iﬁhrh // restriction
0
e Vcycle® (2, r2h)
et IghEZh // interploation
Vvt // correction
Relax v for nj3 iterations // post smoothing

h

return v
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MULTIGRID W-CYCLE

\. [ ] ./
\. [ ] ./ \. [ ] ./
\VAVARVaV;

(d) W-cycle

= Smoother e Defect/Residual - Restrict/Reciprocate - Interpolate/Prolongation e Correction = Input
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(e) W-cycle: complete DAG

Figure: DAG representation of (a) V-cycle and (b) W-cycle



GEOMETRIC MULTIGRID METHOD

Strongly recommend reading:

@ P. Ghysels and W. Vanroose, Modeling the performance of
geometric multigrid on many-core computer architectures,
SIAM J. Scientific Computing (2015).

@ W. Vanroose, P. Ghysels, D. Roose, and K.Meerbergen,
Hiding global communication latency and increasing the
arithmetic intensity in extreme-scale Krylov solvers,
Position Paper at DOE/ASCR workshop on Applied
Mathematics Research for Exascale Computing. Aug 2013.



GMG: SMOOTHER SCALING

naive
40 pluto
35 : : -

30 : : ; '
25 | : . : -
20 1

GFlop/s

threads

Scalability of 10 iterations of the Jacobi smoother on an 80002
domain on a 16-core Intel Sandy Bridge

Source: Ghysels (LBNL) and Vanroose (University of
Antwerp) SIAM J. Scientific Computing 2015



GMG: EXECUTION TIME (2-D)
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Timings for a full solve on a 81912 domain using V -cycles with
a relative stopping tolerance 1012

Source: Ghysels and Vanroose 2015



GMG: EXECUTION TIME (3-D)

40 T T

X naive —+—
35 \ pluto
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time (s)
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smoothing steps

Timings for a full solve on a 5113 domain using V -cycles with a
relative stopping tolerance 10~!2 on a dual socket Sandy Bridge
machine for a 3D domain

Source: Ghysels and Vanroose 2015



GMG: CONVERGENCE FOR SMOOTHING STEPS

60 |
2 grid theory —+—
50 - V-cycle experiment = %= _|

40 ~

30 -

# V-cycles

20

10 ~

smoothing steps

The corresponding number of V-cycles required to reach a
10712 relative stopping criterion for both two-grid and
multigrid.

Source: Ghysels and Vanroose 2015
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LBM: INTRODUCTION

@ Lattice-Boltzmann method (LBM) is used for simulation of complex
fluid flows in Computational Fluid Dynamics (CFD)

@ The simplicity of formulation and its versatility explain the rapid
expansion of LBM to applications in complex and multiscale flows

@ Particularly suited for parallel and high performance implementations

@ In spite of tremendous advances in its application, several fundamental
opportunities for optimization remain

@ We explore one such opportunity through this work



LATTICE-BOLTZMANN METHOD

@ Fluid flows are modelled as hypothetical particles

@ moving in a lattice domain (discretized space)
o with different lattice velocities (discretized momentum)
e over different time steps (discretized time)



LATTICE-BOLTZMANN METHOD

@ Fluid flows are modelled as hypothetical particles

@ moving in a lattice domain (discretized space)
o with different lattice velocities (discretized momentum)
e over different time steps (discretized time)

@ Solves the discrete Boltzmann equation for the particle distribution
function (a probability density function)



LBM - LATTICE ARRANGEMENTS

@ Lattice arrangements are represented as DmQn

@ m is the space dimensionality of the lattice

@ 1 is the number of PDFs (or speeds) involved

I y 17 4 8
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Figure: D2Q9 (left) & D3Q19 (right) lattice arrangements



LBM - LATTICE ARRANGEMENTS

@ Lattice arrangements are represented as DmQn

@ m is the space dimensionality of the lattice
@ 1 is the number of PDFs (or speeds) involved

@ Choice of lattice affects precision and duration of simulation

_ 4 8
.

Figure: D2Q9 (left) & D3Q19 (right) lattice arrangements



LATTICE-BOLTZMANN METHOD

@ The discretized form of Lattice-Boltzmann Equation forms
the basis of all LBM models

filx + ALt + At) = fi(x, t) + Qi(fi(x, 1)), i=1,...n. (1)



LATTICE-BOLTZMANN METHOD

@ The discretized form of Lattice-Boltzmann Equation forms
the basis of all LBM models

filx + At t + At) = fi(x, t) + Qi(fi(x, 1)), i=1,...n. (1)

@ Eqgn. 1is solved in two steps, the collision step (Eqn. 2) &
the advection step (Eqn. 3)

S 06t + Al = fi(x 1) + Qi(fi(x, ) @)

filx + At t + At) = f(x, t + At) 3)
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Figure: Push Scheme



LBM - IMPLEMENTATION STRATEGIES
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Figure: Push Scheme

(c) Post-propagation
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Figure: Pull Scheme

(c) Post-collision




Is it possible to optimize LBM using
time tiling?



@ LBM can be written using storage for either one grid or two grids



TiIME TILING LBM COMPUTATIONS

@ LBM can be written using storage for either one grid or two grids
@ One grid = Separate collision and advection

@ Fused Collision + Advection = Two grids

time
=
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Figure: 1D LBM with single grid
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TiIME TILING LBM COMPUTATIONS

@ LBM can be written using storage for either one grid or two grids
@ One grid = Separate collision and advection

@ Fused Collision + Advection = Two grids

Figure: 1D LBM with single grid Figure: Pull scheme on a 1D LBM

@ Not possible to “time tile” LBM with single grid

@ Time tiling is possible with two grids



MSLBM - LBM OPTIMIZATION FRAMEWORK

@ We utilize a fused version of the LBM kernel

@ No explicit advection phase
@ 2 data grids with a pull scheme to read data
@ Array-of-Structures (AoS) layout for data



INPUT TO POLYHEDRAL TILER

#pragma scop
for (t = 0; t < _nTimesteps; t++)
for (y = 2; y < _nY; y++)
for (x = 1; x < _nX; x++)

lbm_kernel(grid[t % 2][y][x][C],
grid[t % 2][y - 1][x + O][N],
grid[t % 2][y + 1][x + O][SI,
grid[t % 2][y + 0][x - 1J[E],
grid[t % 2][y + 0][x + 1][W],
grid[t % 2][y - 1][x - 1][NE],

+

+

o° o° o of

grid[t % 21[y - 11[x + 11[NwW],
grid[t % 2][y + 1]1[x 1]1[SE],
grid[t % 2][y + 1][x 1]1[SwW],

&grid[(t +
&grid[(t +
&grid[(t +
&grid[(t +
&grid[(t + 1)

+

+

+

+

2] [yl Ix]ICI,

2] [yl [x]INI,
2][ylIx][S],

2] [yl [x][E],

2] [yl [x] W],

2] [yl [x][NE],

21 [yl [x][NW],

2] [yl [x][SE],

21 [yl [x]1[SWI, t, vy, X);

[
o® o° of

-
o°

&grid[(t
&grid[(t
&grid[(t
&grid[(t

1)
1)

-
0 o o o° of

@ Use the PET polyhedral frontend [Verdoolaege and Grosser 2012]: the
LBM collision is treated as a blackbox (abstracted as a single function)

@ Dependence structure is now similar to “toy time-iterated stencils”

@ All time tiling strategies can now be applied!



EXPERIMENTAL SETUP

Intel Xeon E5-2680 (SandyBridge)

Clock 2.7 GHz
Cores / socket 8
Total cores 16
L1 cache / core 32 KB
L2 cache / core 512 KB
L3 cache / socket 20 MB
Peak GFLOPs 172.8
Compiler Intel C compiler (icc) 14.0.1

Compiler flags -O3 -xHost -ipo -fno-alias -fno-fnalias
-restrict -fp-model precise -fast-transcendentals

Linux kernel 3.8.0-38

Table: Architecture details

@ We compare the performance of our framework on 7 benchmarks
against
@ Palabos - an open-source CFD solver based on LBM

o Compiler auto-parallelization [icc-auto-par]
@ Naive manual parallelization using OpenMP [icc-omp-par]
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BENCHMARKS

Lid Driven Cavity - d2q9, d3q19 and d3q27
SPEC LBM [470.lbm from SPEC2006] - d3q19
Poiseuille Flow - d2q9

Flow Past Cylinder - d2q9

MRT - GLBM - d2q9

Performance Metrics
@ MLUPS - Million Lattice site Updates Per Second
@ MEUPS - Million Element Updates Per Second
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PERFORMANCE - MRT (D2Q9)
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Attainable GFlops/sec

512

345.6 Peak DP
256
128 SMSLBM /
i
'
64 imsLBM res)
palabos !
7 LBM-novec
32 st
‘merM-no </
|
16 'bmsLIB 8 cores)
l.pal 0s /,’
. ! ’
8 .
7 K e ldc-d3q27
4 ’ e nrt-d2q9
g Seq Peak STREAM B/W
4 g N =1 b/s)
4 Singl STREAM
’s’eq o (344 cB/%)
“
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

Figure: Roofline model for mrt-d2q9 & ldc-d3q27

32




ROOFLINE PERFORMANCE MODEL - CONTD.
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@ msLBM obtains further improvement over Palabos in both operational
intensity and peak achievable performance



OUTLINE

© Case Studies
@ Solving Partial Differential Equations

@ Lattice Boltzmann Method
@ Image Processing Pipelines



POLYMAGE

PolyMage
http:/ /mcl.csa.iisc.ernet.in/polymage.html

A DSL and Compiler for Automatic Parallelization and
Optimization of Image Processing Pipelines



IMAGE PROCESSING PIPELINES

Graphs of interconnected processing stages

Harris s—

Figure: Harris corner detection



COMPUTATION PATTERNS

Point-wise

f<x7y> = Wy 'g(x?y’.) +wg '8(9@% .) +wp 'g(xay’.)



COMPUTATION PATTERNS

Stencil

+1 +1

fxyy)= > > glx+oxy+oy) wloyoy)

oy=—1oy=-1



COMPUTATION PATTERNS

Downsample

fap= % 5 g@ton2ytoy) wlonoy)

oy=—10y=-1



COMPUTATION PATTERNS

Upsample

+1  +1
fry)= > 3 s((x+02)/2,(y +0y)/2) - w(ox, 0y, %, Y)

oy=—1oy=—



EXAMPLE: PYRAMID BLENDING PIPELINE

Image courtesy: Kyros Kutulakos



WHERE ARE IMAGE PROCESSING PIPELINES USED?

@ On images uploaded to social networks like Facebook,
Google+

@ On all camera-enabled devices

e Everyday workloads from data center to mobile device
scales

e Computational photography, computer vision, medical
imaging, ...

Google+ Auto Enhance




NAIVE VS OPTIMIZED IMPLEMENTATION

e Naive implementation in C

e Naive parallelization — 7
OpenMP, Vector pragmas (icc)

Execution time (ms)

e Manual optimization — 29 x
Seq Par Tuned Locality, Parallelism, Vector

. . intrinsics
Harris corner detection

(16 cores)

Manually optimizing pipelines is hard



NAIVE VS OPTIMIZED IMPLEMENTATION

e Naive implementation in C

e Naive parallelization — 7
OpenMP, Vector pragmas (icc)

Execution time (ms)

e Manual optimization — 29 x
Seq Par Tuned Locality, Parallelism, Vector
intrinsics

Harris corner detection
(16 cores)

Goal: Performance levels of manual tuning
Without the pain



OUR APPROACH: POLYMAGE

e High-level language (DSL embedded in Python)

— Allow expressing common patterns intuitively
— Enables compiler analysis and optimization

e Automatic Optimizing Code Generator

— Uses domain-specific cost models to apply
complex combinations of scaling, alignment,
tiling and fusion to optimize for parallelism and
locality



HARRIS CORNER DETECTION

R, C = Parameter(Int), Parameter(Int) (+\label{param}+)
I = Image(Float, [R+2, C+2]) (*\label{image}+)

X, y = Variable(), Variable() (x\label{vars}+)
row, col = Interval(e,R+1,1), Interval(e,C+1,1)(=\label{intervals}+)

Condition(x,
Condition(y, "’

*,1) & Condition(x,
,1) & Condition(y,"

JR) &(+\label{cond1}+)
8}

cb = Condition(x
Condition(y,

12) & Condition(x
,2) & Condition(y,

-1) &(x\label{cond2}+)
)

Iy = Function(varDom = ([x,y], [row,col]),Float) («\label{f1}«)
Ty.defn = [ Case(c, Stencil(I(x,y), 1.0/12, (+\label{d1}+)

(1,2 1)1

Ix = Function(varDom = ([x,y],[row,col]),Float) (x\label{f2}+)
Ix.defn = [ Case(c, Stencil(I(x,y), 1.6/12,(x\label{d2}+)
(-1, e, 1J,
(-2, 0, 2,
[-1, 0, 111 1

Ixx = Function(varDom = ([x,y],[row,col]),Float) (x\label{f3}+)
Ixx.defn = [ Case(c, Ix(x,y) = Ix(x,y)) ](*\label{d3}+)

Iyy = Function(varDom = ([x,y], [row,col]),Float) (+\label{f4}+)
Iyy.defn = [ Case(c, Ty(x,y) * Iy(x,y)) ](+\label{dd}+)

Ixy = Function(varDom = ([x,y],[row,col]),Float) («\label{f5}=)
Ixy.defn = [ Case(c, Ix(x,y) = Iy(x,y)) 1(x\label{d5})

Function(varbom = ([x,y], [row,col]),Float) (+\label{f6})
Function(varDom = ([x,y], [row,col]},Float) (+\label{f7}+)
Function(varDom = ([x,y], [row,col]),Float) (+\label{f8})
for pair in [(Sxx, Ixx), (Syy, Iyy), (Sxy, Ixy)l:(+\label{meta}+)
pair(0].defn = [ Case(cb, Stencil(pair(1], 1,(+\label{d6})
)11,

11, 1,
[EHEVRVIT

det = Function(varDom = ([x,y],[row,col]),Float) (=\label{f9}=)

d = Sxx(x,y) * Syy(x,y) - Sxy(x,y) * Sxy(x,y)
det.defn = [ Case(cb, d) ] (+\label{d7}s) harris

trace = Function(varDom = ([x,y], [row,col]),Float) (+\label{f10}+)
trace.defn = [ Case(cb, Sxx(x,y) + Syy(x,y)) ]1(+\label{d8}+)

harris = Function(varDom = ([x,y], [row,col]),Float) (x\label{f11}+)
coarsity = det(x,y) - .04 = trace(x,y) = trace(x,y) (+\label{d9}+)
harris.defn = [ Case(cb, coarsity) ]



OUR APPROACH: POLYMAGE

e Automatic Optimizing Code Generator

— Uses domain-specific cost models to apply
complex combinations of scaling, alignment,
tiling and fusion to optimize for parallelism and
locality



POLYHEDRAL REPRESENTATION

| | | | | | | | | | | | | | | | | |
P A S S A O A
S T T T S R S S S S R T
fz,,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,
T T T S R R N S S S S R N R
fl,,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,
T S S S T T R R B B R R
L L L L L L L L L L L L L L L L L L
X = Variable()
fin = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(®, 17, 1)1), Float)
fi.defn = [ fi,(x) + 11
fo = Function(varDom = ([x], [Interval(l, 16, 1)]), Float)

fo.defn = [ fi(x-1) + f1(x+1) ]
fout = Function(varDom = ([x],
fout-defn = [ f(x-1) + fr(x+1) 1]

[Interval(2, 15, 1)]), Float)



POLYHEDRAL REPRESENTATION

Domains

| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
fu| -6 @6 6eeeeeeeeee
| | | | | | | | | | | | | | | | | |
LI A A 240 40 A A0 40 A A0 A0 A A0 A0 A ARFE
| | | | | | | | | | | | | | | | | |
fif 6666666060000 0600600 0
| | | | | | | | | | | | | | | | | |
L L L L L L L L L L L L L L L L L L
X = Variable()
fin = Image(Float, [18])
f1 = Function(varDom = ([x], [Interval(®, 17, 1)1), Float)
fi.defn = [ fi,(x) + 1]
fo = Function(varDom = ([x], [Interval(l, 16, 1)]), Float)
fo.defn = [ fi(x-1) + f1(x+1) ]

(Ix1,
[ H(x-1) + fo(x+1) 1]

fout = Function(varDom =
fgut.defn =

[Interval(2, 15, 1)]), Float)



POLYHEDRAL REPRESENTATION

Dependence vectors

Function Dependence Vectors

Jour(¥) = folx =1)-fo(x +1) (1, 1), (1, 1)
LE)=HAx-D+A+D) 1,1),1,-1)
fi(x) = fin(x)




POLYHEDRAL REPRESENTATION

Live-outs

Function Dependence Vectors

Jour(¥) = folx =1)-fo(x +1) (1, 1), (1, 1)
LE)=HAx-D+A+D) 1,1),1,-1)
fi(x) = fin(x)




SCHEDULING CRITERIA

Parallelism Locality Storage



SCHEDULING CRITERIA

Default schedule




SCHEDULING CRITERIA

Default schedule




SCHEDULING CRITERIA

Default schedule




SCHEDULING CRITERIA

Parallelogram tiling




SCHEDULING CRITERIA

Split tiling

SN NS




SCHEDULING CRITERIA

Overlap tiling

PN ' ‘
0N

(1
Al /& -
\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\




OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

fiz
fn

Function Schedule

fr2(x) =fux—=1)-f1(2x+1)  (x) = (2,x)
fr(x) =f@2x = 1)-f(2x +1)-f(2x) (x) = (1,%)
f(x) = fin(x) (x) = (0,%)

e Prior approaches for overlapped tiling only
consider homogeneous time-iterated stencils



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

fiz
fn

Function Schedule

fr2(x) =fux—=1)-f1(2x+1)  (x) = (2,x)
fr(x) =f@2x = 1)-f(2x +1)-f(2x) (x) = (1,%)
f(x) = fin(x) (x) = (0,%)

e Cannot have a fixed tile shape when dependence
vectors are non-constant



OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

e

1
(x) = (2,4x)
(x) = (1,2x)

Schedu
(x) = (0,x)

Function

fra(x)

fr1(2x=1)-fl1(2x +1)

f2x —1)-f(2x +1)-f(2x)

fin(¥)

fux)

f()

e Scaling and aligning the schedules



OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS
fout BROSOROECRONONORORONORORONOSOROROMOSORORONMOROROXO),
fT | d 5 I - i < - e < 5 e < = -l <
fi | & \..‘.\
FloeveVWeVeWeVeWeveVeve
Function Schedule
Fout @) = f1(x/2) () = (&)

x) — (3,2x)
x) = (2,4x)

fr(x) =fi2(x/2)- fl2(x/2+ 1) (
fr@)=fu@x-1)fa(2x+1)  (

fu(x) =f@2x 1) f(2x+1)-f(2x) (x) — (1,2x)
f(x) = fin(x) (x) = (0,)




OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

Conservative vs precise bounding faces

e Determining tile shape
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OVERLAPPED TILING FOR HETEROGENEOUS

FUNCTIONS

Conservative vs precise bounding faces

e Determining tile shape



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

four |
fr
fo
fu
f

e Significant reduction in redundant computation



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

e Tile size 7, Overlap O, Height
Trade-off between fusion height and overlap



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

e Tile size 7, Overlap O, Height
Trade-off between fusion height and overlap



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

e Tile size 7, Overlap O, Height
Trade-off between fusion height and overlap



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS
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Scratch pads
o Reduction in intermediate storage
o Better locality and reuse
o Privatized for each thread



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS

fout
fr
fi2
fu
f

Scratch pads
o Reduction in intermediate storage
o Better locality and reuse
o Privatized for each thread



OVERLAPPED TILING FOR HETEROGENEOUS
FUNCTIONS
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Scratch pads
o Reduction in intermediate storage
o Better locality and reuse
o Privatized for each thread



BENCHMARKS

Seven representative benchmarks of varying
structure and complexity

Benchmark Stages Lines Image size
Unsharp Mask 4 16 2048x2048x3
Bilateral Grid 7 43 2560x1536
Harris Corner 11 43 6400x 6400
Camera Pipeline 32 86 2528 x1920
Pyramid Blending 44 71 2048x2048x3
Multiscale Interpolate 49 41  2560x1536x3
Local Laplacian 99 107 2560x1536x3




@ Pluto/Pluto+
o Affine Transformations
e Tiling

© Case Studies
@ Solving Partial Differential Equations
@ Lattice Boltzmann Method
@ Image Processing Pipelines

© Conclusions



CONCLUSIONS

@ Interesting to see how numerical techniques can be chosen
and designed around modern parallel architectures and
optimization infrastructure
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