The Pluto Compiler and its Use for Computational Sciences

Uday Bondhugula

uday@csa.iisc.ernet.in

Dept of CSA Indian Institute of Science Bangalore 560012 India

with Aravind Acharya, Vinay Vasista, Kumudha KN, Irshad Pananilath, Ravi Teja Mullapudi

WHAT IS PLUTO?

• A source-to-source optimizer and parallelizer

WHAT IS PLUTO?

- A source-to-source optimizer and parallelizer
- Uses many other polyhedral libraries and tools like ISL, Polylib, Cloog, Pet, Clan, Candl

HOW CAN PLUTO BE USED?

- **Push button:** fully automatically for optimization (tiling and other transformations), parallelization
- Almost automatic: With an understanding of what Pluto does, use it to obtain desired result
- DSLs: In domain-specific compilers/optimizers or library generators

HOW CAN PLUTO BE USED?

- **Push button:** fully automatically for optimization (tiling and other transformations), parallelization
- Almost automatic: Having understood what Pluto does, use it to obtain desired result
- **DSLs**: In domain-specific compilers/optimizers or library generators

BIG PICTURE: ROLE OF COMPILERS

- Improve existing general-purpose compilers (for C, C++, Python, ...)
- LLVM/Polly, GCC/Graphite, PPCG, Pluto, other compilers/tools

- Build new domain-specific languages and compilers
- Scientists say WHAT they execute and not HOW they execute

BIG PICTURE: ROLE OF COMPILERS

The Evolutionary Approach

- Improve existing general-purpose compilers (for C, C++, Python, ...)
- LLVM/Polly, GCC/Graphite, PPCG, Pluto, other compilers/tools

The Revolutionary Approach

- Build new domain-specific languages and compilers
- Scientists say WHAT they execute and not HOW they execute

Important to pursue both

OUTLINE

- Pluto/Pluto+
 - Affine Transformations
 - Tiling
- Case Studies
 - Solving Partial Differential Equations
 - Lattice Boltzmann Method
 - Image Processing Pipelines
- 3 Conclusions

OUTLINE

- Pluto/Pluto+
 - Affine Transformations
 - Tiling
- 2 Case Studies
 - Solving Partial Differential Equations
 - Lattice Boltzmann Method
 - Image Processing Pipelines
- 3 Conclusions

- Examples of affine functions of i, j: i + j, i j, i + 1, 2i + 5
- Not affine: ij, i^2 , $i^2 + j^2$, a[j]

- Examples of affine functions of i, j: i + j, i j, i + 1, 2i + 5
- Not affine: ij, i^2 , $i^2 + j^2$, a[j]

Figure: Iteration space

Figure: Transformed space

```
#pragma omp parallel for private(t2)
for (t1=-M+1; t1<=N-1; t1++) {
   for (t2=max(0,-t1); t2<=min(M-1,N-1-t1); t2++){
        A[t1+t2+1][t2+1] = f(A[t1+t2][t2]);
   }
}</pre>
```

• Transformation: $(i,j) \rightarrow (\mathbf{i} - \mathbf{j}, \mathbf{j})$

Figure: Iteration space

Figure: Transformed space

- Affine transformations are attractive because:
 - Preserve collinearity of points and ratio of distances between points
 - Code generation with affine transformations has thus been studied well (CLooG, ISL, OMEGA+)

Figure: Iteration space

Figure: Transformed space

- Affine transformations are attractive because:
 - Preserve collinearity of points and ratio of distances between points
 - Code generation with affine transformations has thus been studied well (CLooG, ISL, OMEGA+)
 - Model a very rich class of loop re-orderings
 - Useful for several domains like dense linear algebra, stencils, image processing pipelines, Lattice Boltzmann Method

Figure: Iteration space

Figure: Transformed space

 Affine transformations can improve parallelism and locality (Feautrier 1992, Lengauer, Lim and Lam 1997, Griebl 2004, Pluto 2008)

THE PLUTO ALGORITHM

- Designed around 2008 [Bondhugula et al. CC 2008, PLDI 2008]
- Finds good transformations to improves locality and parallelism
- Extended in 2014-2015 (transformation coefficients need not be non-negative)

FINDING VALID AND GOOD AFFINE TRANSFORMATIONS

```
(i, j)
(j, i)
(i+j, j)
(i-j, j)
(i, i+j)
(i+j, i-j)
```

FINDING VALID AND GOOD AFFINE TRANSFORMATIONS

```
(i, j)
(j, i)
(i+j, j)
(i-j, j)
(i, i+j)
(i+j, i-j)
```

- One-to-one functions
- Validity: dependences should not be violated
- Coefficients: for i j, the coefficients are 1,-1

PLUTO ALGORITHM

• Optimization Problem: Minimize dependence distance

PLUTO ALGORITHM

- Optimization Problem: Minimize dependence distance
- Constraints:
 - Tiling validity constraints
 - Dependence distance bounding constraints
 - Linear Independence constraints

PLUTO ALGORITHM

- Optimization Problem: Minimize dependence distance
- Constraints:
 - Tiling validity constraints
 - Dependence distance bounding constraints
 - Linear Independence constraints

• Partition and execute iteration space in blocks

```
for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,j)
```

Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism

```
for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,j)</pre>
```


Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism
- Validity of tiling

```
for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,j)
```

Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism
- Validity of tiling
 - No cycle between tiles

```
for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,j)
```

Figure: Iteration space

Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism
- Validity of tiling
 - No cycle between tiles
 - Sufficient condition: All dependence components should be non-negative

```
for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,j)
```

Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism
- Validity of tiling
 - No cycle between tiles
 - Sufficient condition: All dependence components should be non-negative
- Time tiling

```
for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,j)
```


Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism
- Validity of tiling
 - No cycle between tiles
 - Sufficient condition: All dependence components should be non-negative
- Time tiling

```
for (i=1; i<T; i++)
for (j=1; j<N-1; j++)
S(i,j)
```


Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism
- Validity of tiling
 - No cycle between tiles
 - Sufficient condition: All dependence components should be non-negative
- Time tiling

Figure: Invalid tiling

Figure: Iteration space

- Partition and execute iteration space in blocks
- Benefits cache locality & parallelism
- Validity of tiling
 - No cycle between tiles
 - Sufficient condition: All dependence components should be non-negative
- Time tiling

Figure: Invalid tiling

Figure: Iteration space

Figure: Valid tiling

Figure: Parallelogram tiling

Figure: Original iteration space

Figure: Concurrent start possible

Figure: Concurrent start possible

- Diamond tiling
 - Face allowing concurrent should be strictly within the cone of the tiling hyperplanes
 - Eg: (1,0) is in the cone of (1,1) and (1,-1)

CLASSICAL TIME SKEWING VS DIAMOND TILING

Figure: Two ways of tiling heat-1d: parallelogram & diamond

- Classical time skewing: $(t, i) \rightarrow (t, t + i)$
- Diamond tiling: $(t, i) \rightarrow (t + i, t i)$

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI RELAXATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
        A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
        A[t%2][i][j+1], A[t%2][i][j-1], A[t%2][i][j]);</pre>
```

Enabling transformation for diamond tiling

$$T((t,i,j)) = (t+i,t-i,t+j).$$

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI RELAXATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
        A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
        A[t%2][i][j+1], A[t%2][i][j-1], A[t%2][i][j]);</pre>
```

Enabling transformation for diamond tiling

$$T((t,i,j)) = (t+i,t-i,t+j).$$

Perform the actual tiling (in the transformed space)

$$T'((t,i,j)) = \left(\frac{t+i}{64}, \frac{t-i}{64}, \frac{t+j}{64}, t+i, t-i, t+j\right)$$

A SEQUENCE OF TRANSFORMATIONS FOR 2-D JACOBI RELAXATIONS

```
for (t = 0; t < T; t++)
  for (i = 1; i < N+1; i++)
    for (j = 1; j < N+1; j++)
        A[(t+1)%2][i][j] = f((A[t%2][i+1][j], A[t%2][i][j], A[t%2][i-1][j],
        A[t%2][i][j+1], A[t%2][i][j-1], A[t%2][i][j]);</pre>
```

Enabling transformation for diamond tiling

$$T((t,i,j)) = (t+i,t-i,t+j).$$

Perform the actual tiling (in the transformed space)

$$T'((t,i,j)) = \left(\frac{t+i}{64}, \frac{t-i}{64}, \frac{t+j}{64}, t+i, t-i, t+j\right)$$

Create a wavefront of tiles

$$T''((t,i,j)) = \left(\frac{t+i}{64} + \frac{t-i}{64}, \frac{t-i}{64}, \frac{t+j}{64}, t, t+i, t+j\right)$$

SOME EXAMPLES OF HOW PLUTO CAN BE USED

• Optimize Jacobi and other relaxations via time tiling

SOME EXAMPLES OF HOW PLUTO CAN BE USED

- Optimize Jacobi and other relaxations via time tiling
- Optimize pre-smoothing steps at various levels of Geometric Multigrid method

SOME EXAMPLES OF HOW PLUTO CAN BE USED

- Optimize Jacobi and other relaxations via time tiling
- Optimize pre-smoothing steps at various levels of Geometric Multigrid method
- Optimize Lattice Boltzmann Method computations

USING PLUTO: RECOMMENDATIONS

Web: http://pluto-compiler.sf.net

- Use git version
- Use 'pet' branch of git version
- Preferable: use Intel's C/C++ compiler (14.0 or higher) to compile generated code

OUTLINE

- 1 Pluto/Pluto+
 - Affine Transformations
 - Tiling
- 2 Case Studies
 - Solving Partial Differential Equations
 - Lattice Boltzmann Method
 - Image Processing Pipelines
- 3 Conclusions

POISSON'S EQUATION

Poisson's equation:

$$\nabla^2 u = f.$$

$$\frac{1}{h^2} \left[\begin{array}{ccc} -1 & & \\ -1 & 4 & -1 \\ & -1 & \end{array} \right] u_h = f_h$$

- We are solving y = Ax
- What about A^{-1} ?

GEOMETRIC MULTIGRID METHOD

- Use a hierarchical structure a multi-scale representation of the grid
- Perform pre-smoothing at a finer level
- Restrict the error to a coarser grid
- Solve for the error at a coarser level (recursion)
- Interpolate the error to the finer level
- Run multiple iterations of the above

Pluto can be used to optimize the pre-smoothing or post-smoothing steps readily

HIERARCHICAL MESH STRUCTURE

Figure: Hierarchical mesh structure for Multigrid levels

MULITIGRID V-CYCLE: ALGORITHM

11 return v^h

```
Input : v^h, f^h
1 Relax v^h for n_1 iterations: v^h \leftarrow (1 - \omega D^{-1} A^h) v^h + \omega D^{-1} f^h
   // pre-smoothing
2 if coarsest level then
     Relax v^h for n_2 iterations
                                                                      // coarse smoothing
4 r^h \leftarrow f^h - A^h v^h
                                                                                   // residual
r^{2h} \leftarrow I_h^{2h} r^h
                                                                              // restriction
e^{2h} \leftarrow 0
7 e^{2h} \leftarrow V - cycle^{2h}(e^{2h}, r^{2h})
e^h \leftarrow I_{2h}^h e^{2h}
                                                                           // interploation
9 v^h \leftarrow v^h + e^h
                                                                                // correction
10 Relax v^h for n_3 iterations
                                                                          // post smoothing
```

MULITIGRID V-CYCLE

NAS MG V-CYCLE

MULTIGRID W-CYCLE

(e) W-cycle: complete DAG

Figure: DAG representation of (a) V-cycle and (b) W-cycle

GEOMETRIC MULTIGRID METHOD

Strongly recommend reading:

- P. Ghysels and W. Vanroose, Modeling the performance of geometric multigrid on many-core computer architectures, SIAM J. Scientific Computing (2015).
- W. Vanroose, P. Ghysels, D. Roose, and K.Meerbergen, Hiding global communication latency and increasing the arithmetic intensity in extreme-scale Krylov solvers, Position Paper at DOE/ASCR workshop on Applied Mathematics Research for Exascale Computing. Aug 2013.

GMG: SMOOTHER SCALING

Scalability of 10 iterations of the Jacobi smoother on an 8000^2 domain on a 16-core Intel Sandy Bridge

Source: Ghysels (LBNL) and Vanroose (University of Antwerp) SIAM J. Scientific Computing 2015

GMG: EXECUTION TIME (2-D)

Timings for a full solve on a 8191^2 domain using V -cycles with a relative stopping tolerance 10^{-12}

Source: Ghysels and Vanroose 2015

GMG: EXECUTION TIME (3-D)

Timings for a full solve on a 511^3 domain using V -cycles with a relative stopping tolerance 10^{-12} on a dual socket Sandy Bridge machine for a 3D domain

Source: Ghysels and Vanroose 2015

GMG: CONVERGENCE FOR SMOOTHING STEPS

The corresponding number of V-cycles required to reach a 10^{-12} relative stopping criterion for both two-grid and multigrid.

Source: Ghysels and Vanroose 2015

OUTLINE

- 1 Pluto/Pluto+
 - Affine Transformations
 - Tiling
- 2 Case Studies
 - Solving Partial Differential Equations
 - Lattice Boltzmann Method
 - Image Processing Pipelines
- 3 Conclusions

- Lattice-Boltzmann method (LBM) is used for simulation of complex fluid flows in Computational Fluid Dynamics (CFD)
- The simplicity of formulation and its versatility explain the rapid expansion of LBM to applications in complex and multiscale flows

- Lattice-Boltzmann method (LBM) is used for simulation of complex fluid flows in Computational Fluid Dynamics (CFD)
- The simplicity of formulation and its versatility explain the rapid expansion of LBM to applications in complex and multiscale flows
- Particularly suited for parallel and high performance implementations

- Lattice-Boltzmann method (LBM) is used for simulation of complex fluid flows in Computational Fluid Dynamics (CFD)
- The simplicity of formulation and its versatility explain the rapid expansion of LBM to applications in complex and multiscale flows
- Particularly suited for parallel and high performance implementations
- In spite of tremendous advances in its application, several fundamental opportunities for optimization remain

- Lattice-Boltzmann method (LBM) is used for simulation of complex fluid flows in Computational Fluid Dynamics (CFD)
- The simplicity of formulation and its versatility explain the rapid expansion of LBM to applications in complex and multiscale flows
- Particularly suited for parallel and high performance implementations
- In spite of tremendous advances in its application, several fundamental opportunities for optimization remain
- We explore one such opportunity through this work

LATTICE-BOLTZMANN METHOD

- Fluid flows are modelled as hypothetical particles
 - moving in a lattice domain (discretized space)
 - with different lattice velocities (discretized momentum)
 - over different time steps (discretized time)

LATTICE-BOLTZMANN METHOD

- Fluid flows are modelled as hypothetical particles
 - moving in a lattice domain (discretized space)
 - with different lattice velocities (discretized momentum)
 - over different time steps (discretized time)
- Solves the discrete Boltzmann equation for the particle distribution function (a probability density function)

LBM - LATTICE ARRANGEMENTS

- Lattice arrangements are represented as *DmQn*
 - \bullet *m* is the space dimensionality of the lattice
 - *n* is the number of PDFs (or speeds) involved

Figure: D2Q9 (left) & D3Q19 (right) lattice arrangements

LBM - LATTICE ARRANGEMENTS

- Lattice arrangements are represented as *DmQn*
 - *m* is the space dimensionality of the lattice
 - *n* is the number of PDFs (or speeds) involved
- Choice of lattice affects precision and duration of simulation

Figure: D2Q9 (left) & D3Q19 (right) lattice arrangements

LATTICE-BOLTZMANN METHOD

• The discretized form of Lattice–Boltzmann Equation forms the basis of all LBM models

$$f_i(\mathbf{x} + \mathbf{c_i}\Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(f_i(\mathbf{x}, t)), \ i = 1, \dots n. \quad (1)$$

LATTICE-BOLTZMANN METHOD

• The discretized form of Lattice–Boltzmann Equation forms the basis of all LBM models

$$f_i(\mathbf{x} + \mathbf{c_i}\Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(f_i(\mathbf{x}, t)), \ i = 1, \dots n. \quad (1)$$

 Eqn. 1 is solved in two steps, the collision step (Eqn. 2) & the advection step (Eqn. 3)

$$f_i^*(\mathbf{x}, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(f_i(\mathbf{x}, t))$$
 (2)

$$f_i(\mathbf{x} + \mathbf{c_i}\Delta t, t + \Delta t) = f_i^*(\mathbf{x}, t + \Delta t)$$
(3)

LBM - IMPLEMENTATION STRATEGIES

LBM - IMPLEMENTATION STRATEGIES

Figure: Pull Scheme

Is it possible to optimize LBM using time tiling?

TIME TILING LBM COMPUTATIONS

• LBM can be written using storage for either one grid or two grids

- LBM can be written using storage for either one grid or two grids
- One grid ⇒ Separate collision and advection
- Fused Collision + Advection \Rightarrow Two grids

Figure: 1D LBM with single grid

- LBM can be written using storage for either one grid or two grids
- One grid ⇒ Separate collision and advection
- Fused Collision + Advection ⇒ Two grids

Figure: 1D LBM with single grid

• Not possible to "time tile" LBM with single grid

39/64

- LBM can be written using storage for either one grid or two grids
- One grid ⇒ Separate collision and advection
- Fused Collision + Advection ⇒ Two grids

Figure: 1D LBM with single grid

Figure: Pull scheme on a 1D LBM

• Not possible to "time tile" LBM with single grid

- LBM can be written using storage for either one grid or two grids
- One grid ⇒ Separate collision and advection
- Fused Collision + Advection ⇒ Two grids

Figure: 1D LBM with single grid

Figure: Pull scheme on a 1D LBM

- Not possible to "time tile" LBM with single grid
- Time tiling is possible with two grids

MSLBM - LBM OPTIMIZATION FRAMEWORK

- We utilize a fused version of the LBM kernel
 - No explicit *advection* phase
 - 2 data grids with a pull scheme to read data
 - Array-of-Structures (AoS) layout for data

INPUT TO POLYHEDRAL TILER

```
#pragma scop
for (t = 0: t < _nTimesteps: t++)</pre>
   for (y = 2; y < _nY; y++)
      for (x = 1: x < _nX: x++)
          lbm_kernel(grid[t % 2][y][x][C],
             qrid[t % 2][y - 1][x + 0][N],
             grid[t % 2][y + 1][x + 0][S],
             grid[t % 2][y + 0][x - 1][E],
             qrid[t % 2][y + 0][x + 1][W],
             grid[t % 2][y - 1][x - 1][NE],
             grid[t % 2][y - 1][x + 1][NW],
             grid[t % 2][y + 1][x - 1][SE],
             qrid[t % 2][y + 1][x + 1][SW],
            &grid[(t + 1) % 2][y][x][C],
            qrid(t + 1) % 2(y)(x)(N),
            &qrid((t + 1) % 2)[y][x][S],
            &grid[(t + 1) % 2][y][x][E],
            qrid(t + 1) % 2(y)(x)(W),
            \ensuremath{\text{agrid}[(t + 1) \% 2][y][x][NE],}
            &grid[(t + 1) % 2][y][x][NW],
            \ensuremath{\text{agrid}[(t + 1) \% 2][y][x][SE],}
            qrid(t + 1) % 2(y)[x][SW], t, y, x);
```

- Use the PET polyhedral frontend [Verdoolaege and Grosser 2012]: the LBM collision is treated as a blackbox (abstracted as a single function)
- Dependence structure is now similar to "toy time-iterated stencils"
- All time tiling strategies can now be applied!

EXPERIMENTAL SETUP

Intel Xeon E5-2680 (SandyBridge)		
Clock	2.7 GHz	
Cores / socket	8	
Total cores	16	
L1 cache / core	32 KB	
L2 cache / core	512 KB	
L3 cache / socket	20 MB	
Peak GFLOPs	172.8	
Compiler	Intel C compiler (icc) 14.0.1	
Compiler flags	-O3 -xHost -ipo -fno-alias -fno-fnalias	
	-restrict -fp-model precise -fast-transcendentals	
Linux kernel	3.8.0-38	

Table: Architecture details

- We compare the performance of our framework on 7 benchmarks against
 - Palabos an open-source CFD solver based on LBM
 - Compiler auto-parallelization [icc-auto-par]
 - Naive manual parallelization using OpenMP [icc-omp-par]

• Lid Driven Cavity - d2q9, d3q19 and d3q27

- Lid Driven Cavity d2q9, d3q19 and d3q27
- SPEC LBM [470.lbm from SPEC2006] d3q19

- Lid Driven Cavity d2q9, d3q19 and d3q27
- SPEC LBM [470.lbm from SPEC2006] d3q19
- Poiseuille Flow d2q9

- Lid Driven Cavity d2q9, d3q19 and d3q27
- SPEC LBM [470.lbm from SPEC2006] d3q19
- Poiseuille Flow d2q9
- Flow Past Cylinder d2q9

- Lid Driven Cavity d2q9, d3q19 and d3q27
- SPEC LBM [470.lbm from SPEC2006] d3q19
- Poiseuille Flow d2q9
- Flow Past Cylinder d2q9
- MRT GLBM d2q9

- Lid Driven Cavity d2q9, d3q19 and d3q27
- SPEC LBM [470.lbm from SPEC2006] d3q19
- Poiseuille Flow d2q9
- Flow Past Cylinder d2q9
- MRT GLBM d2q9

Performance Metrics

- MLUPS Million Lattice site Updates Per Second
- MEUPS Million Element Updates Per Second

PERFORMANCE - LDC

PERFORMANCE - MRT (D2Q9)

ROOFLINE PERFORMANCE MODEL - CONTD.

Figure: Roofline model for mrt-d2q9 & ldc-d3q27

ROOFLINE PERFORMANCE MODEL - CONTD.

Figure: Roofline model for mrt-d2q9 & ldc-d3q27

• msLBM obtains further improvement over Palabos in both operational intensity and peak achievable performance

OUTLINE

- 1 Pluto/Pluto+
 - Affine Transformations
 - Tiling
- Case Studies
 - Solving Partial Differential Equations
 - Lattice Boltzmann Method
 - Image Processing Pipelines
- 3 Conclusions

POLYMAGE

PolyMage

http://mcl.csa.iisc.ernet.in/polymage.html

A DSL and Compiler for Automatic Parallelization and Optimization of Image Processing Pipelines

IMAGE PROCESSING PIPELINES

Graphs of interconnected processing stages

Figure: Harris corner detection

Point-wise

$$f(x,y) = w_r \cdot g(x,y,\bullet) + w_g \cdot g(x,y,\bullet) + w_b \cdot g(x,y,\bullet)$$

Stencil

$$f(x,y) = \sum_{\sigma_x = -1}^{+1} \sum_{\sigma_y = -1}^{+1} g(x + \sigma_x, y + \sigma_y) \cdot w(\sigma_x, \sigma_y)$$

Downsample

$$f(x,y) = \sum_{\sigma_x = -1}^{+1} \sum_{\sigma_y = -1}^{+1} g(2x + \sigma_x, 2y + \sigma_y) \cdot w(\sigma_x, \sigma_y)$$

Upsample

$$f(x,y) = \sum_{\sigma_x = -1}^{+1} \sum_{\sigma_y = -1}^{+1} g((x + \sigma_x)/2, (y + \sigma_y)/2) \cdot w(\sigma_x, \sigma_y, x, y)$$

EXAMPLE: PYRAMID BLENDING PIPELINE

WHERE ARE IMAGE PROCESSING PIPELINES USED?

- On images uploaded to social networks like Facebook, Google+
- On all camera-enabled devices
- Everyday workloads from data center to mobile device scales
- Computational photography, computer vision, medical imaging, ...

Google+ Auto Enhance

NAIVE VS OPTIMIZED IMPLEMENTATION

Harris corner detection (16 cores)

- Naive implementation in C
- Naive parallelization 7×
 OpenMP, Vector pragmas (icc)
- Manual optimization 29× Locality, Parallelism, Vector intrinsics

Manually optimizing pipelines is hard

NAIVE VS OPTIMIZED IMPLEMENTATION

Harris corner detection (16 cores)

- Naive implementation in C
- Naive parallelization 7×
 OpenMP, Vector pragmas (icc)
- Manual optimization 29× Locality, Parallelism, Vector intrinsics

Goal: Performance levels of manual tuning Without the pain

OUR APPROACH: POLYMAGE

- High-level language (DSL embedded in Python)
 - Allow expressing common patterns intuitively
 - Enables compiler analysis and optimization
- Automatic Optimizing Code Generator
 - Uses domain-specific cost models to apply complex combinations of scaling, alignment, tiling and fusion to optimize for parallelism and locality

HARRIS CORNER DETECTION

 $\label{eq:reconstruction} \begin{array}{ll} R, \ C = Parameter(Int), \ Parameter(Int) \ (*\label{param})*) \\ I = Image(Float, [R+2, C+2]) \ (*\label{image})*) \end{array}$

x, y = Variable(), Variable() (*\label{vars}*)
row, col = Interval(0,R+1,1), Interval(0,C+1,1)(*\label{intervals}*)

 $c = Condition(x,'>=',1) \& Condition(x,'<=',R) \&(*\label{cond1}*) \\ Condition(y,'>=',1) \& Condition(y,'<=',C) \\$

 $\begin{array}{lll} cb &= Condition(x,'>=',2) & Condition(x,'<=',R-1) & (*\\label{cond2}*) & Condition(y,'>=',2) & Condition(y,'<=',C-1) \\ \end{array}$

$$\label{eq:continuous} \begin{split} & \text{Iy} = \text{Function}(\text{varDom} = ([x,y], [\text{row}, \text{col}]), \text{Float})(*\\ & \text{Iy}.\text{defn} = [\text{ Case(c, Stencil}(I(x,y), 1.0/12, (*\\ & \text{[f-1, -2, -1]}. \end{split}$$

$$\begin{split} & \text{Ixx} = \text{Function(varDom} = ([x,y],[\text{row},\text{col}]),\text{Float)}(*\\ & \text{label}\{f3\}*) \\ & \text{Ixx.defn} = [& \text{Case}(c,\;\text{Ix}(x,y) *\;\text{Ix}(x,y))\;](*\\ & \text{label}\{d3\}*) \end{split}$$

$$\label{eq:invariant} \begin{split} & \text{Iyy} = \text{Function(varDom} = ([x,y],[\text{row},\text{col}]),\text{Float)(*}\\ & \text{Iyy.defn} = [\text{ Case(c, Iy(x,y) * Iy(x,y)) }](*\\ & \text{Valabel}\{d4\}*) \end{split}$$

Ixy = Function(varDom = ([x,y],[row,col]),Float)(*\label{f5}*)
Ixy.defn = [Case(c, Ix(x,y) * Iy(x,y))](*\label{d5}*)

 $\begin{aligned} & \text{Sxx} = \text{Function}(\text{varDom} = \{|x,y|, |\text{row}, \text{col}|\}, \text{Float}| \{\text{valbe}|\{6\}\text{e}\} \\ & \text{Sy} = \text{Function}(\text{varDom} = \{|x,y|, |\text{row}, \text{col}|\}, \text{Float}| \{\text{valbe}|\{6\}\text{e}\} \\ & \text{Sy} = \text{Function}(\text{varDom} = \{|x,y|, |\text{row}, \text{col}|\}, \text{Float}| \{\text{valbe}|\{6\}\text{e}\} \\ & \text{for pair in } \{\text{fcxx}, |\text{txx}, |\text{Sy}, |\text{sy},$

[1, 1, 1], [1, 1, 1]])]

$$\begin{split} & \text{det} = \text{Function}(\text{varDom} = ([x,y],[\text{row},\text{col}]),\text{Float})(*\\ & \text{d} = \text{Sxx}(x,y) * \text{Syy}(x,y) & \text{Sxy}(x,y) \\ & \text{det}.defn = [\text{Case}(cb,d)](*\\ & \text{vlabe}\{d7\}*) \end{split}$$

$$\label{eq:harris} \begin{split} &\text{harris} = \text{Function}(\text{varDom} = ([x,y],[\text{row},\text{col}]),\text{Float})(*\\ &\text{coarsity} = \text{det}(x,y) \; \cdot \; .04 \; * \; \text{trace}(x,y) \; * \; \text{trace}(x,y) (*\\ &\text{harris}.\text{defn} = [\; \text{Case}(\text{cb},\; \text{coarsity}) \;] \end{split}$$

OUR APPROACH: POLYMAGE

- High-level language (DSL embedded in Python)
 - Allow expressing common patterns intuitively
 - Enables compiler analysis and optimization

• Automatic Optimizing Code Generator

 Uses domain-specific cost models to apply complex combinations of scaling, alignment, tiling and fusion to optimize for parallelism and locality

Function	Dependence Vectors
$f_{out}(x) = f_2(x-1) \cdot f_2(x+1)$	(1,1),(1,-1)
$f_2(x) = f_1(x-1) + f_1(x+1)$	(1,1),(1,-1)
$f_1(x) = f_{in}(x)$	

Function	Dependence Vectors
$f_{out}(x) = f_2(x-1) \cdot f_2(x+1)$	(1,1),(1,-1)
$f_2(x) = f_1(x-1) + f_1(x+1)$	(1,1),(1,-1)
$f_1(x) = f_{in}(x)$	

SCHEDULING CRITERIA

 Prior approaches for overlapped tiling only consider homogeneous time-iterated stencils

 Cannot have a fixed tile shape when dependence vectors are non-constant

• Scaling and aligning the schedules

Function	Schedule
$f_{out}(x) = f_{\uparrow}(x/2)$	$(x) \rightarrow (4,x)$
$f_{\uparrow}(x) = f_{\downarrow 2}(x/2) \cdot f_{\downarrow 2}(x/2+1)$	$(x) \rightarrow (3,2x)$
$f_{\downarrow 2}(x) = f_{\downarrow 1}(2x - 1) \cdot f_{\downarrow 1}(2x + 1)$	$(x) \rightarrow (2,4x)$
$f_{\downarrow 1}(x) = f(2x-1) \cdot f(2x+1) \cdot f(2x)$	$(x) \rightarrow (1,2x)$
$f(x) = f_{in}(x)$	$(x) \rightarrow (0, x)$

Determining tile shape
 Conservative vs precise bounding faces

• Determining tile shape Conservative vs precise bounding faces

Determining tile shape
 Conservative vs precise bounding faces

• Significant reduction in redundant computation

• Tile size τ , Overlap O, Height hTrade-off between fusion height and overlap

• Tile size τ , Overlap O, Height hTrade-off between fusion height and overlap

• Tile size τ , Overlap O, Height hTrade-off between fusion height and overlap

Scratch pads

- Reduction in intermediate storage
- Better locality and reuse
- Privatized for each thread

Scratch pads

- Reduction in intermediate storage
- Better locality and reuse
- Privatized for each thread

Scratch pads

- Reduction in intermediate storage
- Better locality and reuse
- Privatized for each thread

BENCHMARKS

Seven representative benchmarks of varying structure and complexity

Benchmark	Stages	Lines	Image size
Unsharp Mask	4	16	2048×2048×3
Bilateral Grid	7	43	2560×1536
Harris Corner	11	43	6400×6400
Camera Pipeline	32	86	2528×1920
Pyramid Blending	44	71	$2048{\times}2048{\times}3$
Multiscale Interpolate	49	41	$2560{\times}1536{\times}3$
Local Laplacian	99	107	2560×1536×3

OUTLINE

- 1 Pluto/Pluto+
 - Affine Transformations
 - Tiling
- 2 Case Studies
 - Solving Partial Differential Equations
 - Lattice Boltzmann Method
 - Image Processing Pipelines
- 3 Conclusions

CONCLUSIONS

 Interesting to see how numerical techniques can be chosen and designed around modern parallel architectures and optimization infrastructure

ACKNOWLEDGEMENTS

- Ravi Teja Mullapudi, Vinay Vasista, Irshad Pananilath, Aravind Acharya, Vinayaka Bandishti (students at IISc)
- Google Research
- Anand Deshpande, Aniruddha Shet, Bharat Kaul, and Sunil Sherlekar from Intel Labs, Bangalore for discussions

Thank You!